
Technische Universität Dresden
Department of Computer Science

Institute for Software and Multimedia Technology
Software Technology Group

Prof. Dr. Uwe Aßmann

Großer Beleg

Design and Prototypical Implementation of a
Pivot Model as Exchange Format for Models and

Metamodels in a QVT/OCL Development
Environment

Matthias Bräuer

Supervised by:

Dr.-Ing. Birgit Demuth

iii

Task description

During the last years, the importance of domain-specific languages (DSL), which build on a
simple meta-metamodel such as EMOF or EMF Ecore, has strongly increased. This development
poses new challenges for the use of OCL as constraint and query language, because a standardized
metamodel, such as the one of the UML, can no longer be assumed. In addition to that, OCL
has become part of the model transformation language QVT (Query/View/Transformation)
which also can be applied to different metamodels. An idea for managing the complexity is
the design of a so-called Pivot Model as an exchange format for models and metamodels in
an OCL/QVT development environment. Furthermore, a mechanism is required that either
statically or dynamically describes respectively realizes the mapping between the Pivot Model
and the metamodels to be supported.

The goal of the work is therefore the design of an adequate Pivot Model as well as a proposal
for realizing the pivot principle including prototypical investigations. The pivot principle should
facilitate the integration and reuse of components of the Dresden OCL Toolkit in a future
OCL/QVT development environment.

To this end, the following partial tasks are to be solved:

• Study of current and relevant research literature
• Analysis of metamodel relationships between UML/MOF and OCL
• Requirements analysis regarding the future integration of the Dresden OCL Toolkit into

the OCL/QVT development environment
• Design of the Pivot Model
• Research into concepts for realizing the pivot mechanism (e.g., composition technologies,

“model weaving”, package merge in UML 2.0, model transformations)
• Experiments to prototypically implement the proposed mechanism (preferably within the

bounds of the Eclipse Modeling Framework (EMF))

iv

v

Acknowledgments

I would like to express my gratitude to my voluntary reviewers Swee Shean, Olli and Florian
whose help in spotting weak parts, gaps in the logical flow, lacking explanations and errors
in my English or slips of the pen has been sincerely appreciated. A special thanks goes out
to Dr. Steffen Zschaler who provided lots of valuable feedback during the OCL “Stammtisch”
meetings. Last not least, I would like to thank my supervisor, Dr. Birgit Demuth, for pointing
me to interesting literature and helping with the overall organization and execution of this
project.

vi

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aim and Scope . 2
1.3 What does “Pivot Model” mean? . 2
1.4 Organization of this Report . 3

1.4.1 Chapter Structure . 3
1.4.2 Typographical Conventions . 3

2 Theoretical Foundations 5
2.1 Metamodeling . 5

2.1.1 Overview . 5
2.1.2 Domain-Specific Languages . 9
2.1.3 The Four Meta Layers . 11

2.2 Model-Driven Software Development . 14
2.2.1 Overview . 14
2.2.2 Model Transformations . 15

2.3 The OMG Standards . 16
2.3.1 Package Merge . 16
2.3.2 The Common Core of UML and MOF . 17
2.3.3 Essential MOF . 19
2.3.4 The Object Constraint Language . 19
2.3.5 Essential OCL . 21
2.3.6 Query / View / Transformation . 22
2.3.7 The OMG MDA initiative . 22

3 Tools and Technology 23
3.1 The Eclipse platform . 23
3.2 The Eclipse Modeling Framework . 24

4 Problem Analysis 25
4.1 A Motivational Example . 25

4.1.1 The Plugin Modeling Language . 25
4.1.2 Adding OCL expressions to Ecore and PML models 26

4.2 Usage Scenarios . 28
4.3 A Conceptual Framework . 28

4.3.1 Overview . 28
4.3.2 The Concepts Level . 30
4.3.3 The Definition Level . 31
4.3.4 The Execution Level . 34

4.4 Requirements Analysis . 35
4.5 The Idea of a Pivot Model . 35

viii

5 Related Work 37
5.1 The Dresden OCL2 Toolkit . 37

5.1.1 Overview . 37
5.1.2 The Concepts Level . 37
5.1.3 The Definition Level . 39
5.1.4 The Execution Level . 41

5.2 Kent OCL . 45
5.2.1 Overview . 45
5.2.2 The Concepts Level . 45
5.2.3 The Definition Level . 49
5.2.4 The Execution Level . 49

5.3 The Epsilon Platform . 50
5.3.1 Overview . 50
5.3.2 The Concepts and Definition Level . 50
5.3.3 The Execution Level . 51

6 Results 53
6.1 Realizing the Pivot Concept . 53

6.1.1 The Concepts Level . 53
6.1.2 The Definition Level . 64
6.1.3 The Execution Level . 67

6.2 Prototypical Implementation . 69
6.2.1 The Concepts Level . 69
6.2.2 The Definition Level . 75
6.2.3 The Execution Level . 83

7 Discussion 87
7.1 Evaluation . 87
7.2 Limitations . 88
7.3 Contributions of this Work . 89
7.4 Summary and Conclusions . 89
7.5 Future Work . 90

A Specification of Pivot Model Operations 93

B Essential OCL Metamodel 97

C Specification of XOCL 101

List of Figures 105

List of Tables 109

Listings 111

List of Abbreviations 113

Bibliography 115

1

1 Introduction

1.1 Motivation

Software engineering has come a long way since its first explicit mention in 1969 [NR68]. Conti-
nuously, new methodologies and paradigms have emerged, each time raising the abstraction bar
further. From structured programming to object-oriented development to component-based sys-
tems, software engineers have strived to produce more reliable software faster and with less effort.
However, the complexity of software has advanced equally rapidly resulting in ever increasing
demands for even higher productivity in software development. To address these challenges, two
interrelated research directions may be identified.

Firstly, modern approaches aim to involve experts in the respective application domain deeper
into the development process. Traditionally, their participation often ends after requirements
elicitation and resumes only during the final stages of acceptance testing. This seems odd, given
that domain knowledge constitutes one of the central elements of every software system. Yet, it
can be partly justified by the inherent complexity of tools and methodologies employed during
the analysis, design and implementation phases. Thus, a central goal should be to equip domain
experts with tools that are tailored to their domain of expertise.

The second aim of current research in software engineering is to “industrialize” the software
engineering process. In other words, developing software should become more like building cars
in a modern assembly line: timely, efficient and flexible in respect to customization demands
by different clients. This stems from the observation that planning, designing, developing and
maintaining a complex software system is still more of an art than a craft requiring significant
experience and creativity. Today, software engineers are faced with a bewildering choice of
frameworks, component technologies, application servers, operating systems as well as scripting
and programming languages. Ideally, many of the more tedious and error-prone tasks such
as manual coding or integration with the underlying platform should be automated, hidden
away or abstracted from. Software engineers could then concentrate on the concrete functional
requirements of a system rather than dealing with its low-level infrastructure. Additional benefits
include increased quality, better reusablity and, ultimately, reduced time to market (TTM),
which increasingly has become the focal point of interest among product managers.

As noted in [SV06, p. 14], these goals are anything but new and represent “something like the
IT industry’s Holy Grail”. However, throughout the last years many promising proposals have
appeared that may indeed move the level of abstraction in software engineering one notch higher.
One of these is Model-Driven Software Development (MDSD) which promotes models to first
class artifacts in the software development process. Rather than relying on a single monolithic
modeling language, MDSD introduces the idea of modeling a complex system using a variety of
different domain-specific languages (DSLs). Through domain-specific notations and specialized
tools, MDSD aims to achieve the above-mentioned integration of domain experts into the analysis
and design phases. Model transformation, code generation and the notion of an exchangeable
platform are MDSD’s answers to the challenges of automation and industrialization.

A key requirement for MDSD are formally specified, unambiguous, and precise models. To
this end, a model written in a DSL may be enriched with expressions in a declarative, formally

2 1. INTRODUCTION

grounded constraint language specifying its semantics. However, defining a new constraint
language for each DSL is neither practical nor feasible. As an answer, this report is going to
examine how the Object Constraint Language (OCL) — the standard language defined by the
Object Management Group (OMG) for querying UML models — can be applied to arbitrary
DSLs. Since OCL has become the foundation of the model transformation language QVT
(Query/View/Transformation), the results of this work show up exciting new possibilities for
the standards-based realization of the MDSD vision.

1.2 Aim and Scope

The aim of this report is to design a pivotal metamodel that can provide the necessary abstraction
to evaluate OCL queries over instances of arbitrary domain-specific languages. Such a Pivot
Model needs to be expressive enough to support all of the OCL language features. At the same
time, it should be as simple as possible to allow for an easy mapping between the Pivot Model
elements and the concepts of the DSLs that are to be integrated. To practically validate the
pivot principle, a second goal of this project is to develop a flexible and extensible mechanism
for defining and realizing this mapping. The prototypical implementation will use the Eclipse
Modeling Framework (EMF) as its technological basis.

This work is done as part of ongoing research that aims to modernize and extend the func-
tionality of the Dresden OCL2 Toolkit, a widely used OCL library and tool collection. Since the
Toolkit’s current infrastructure relies on an outdated model repository whose development is
discontinued, significant re-engineering efforts are necessary. Naturally, these cannot be entirely
achieved within the scope of a single report. In particular, this project does not provide a com-
plete OCL engine based on the new architecture. Also, the time frame available did not suffice
to exhaustively evaluate the proposed solution. Nevertheless, a thorough review of the literature
and related work as well as a comprehensive documentation of design decisions strengthen the
arguments made in this work. The first practical results look promising and should form a solid
foundation for future work.

1.3 What does “Pivot Model” mean?

The term “pivot” in engineering usually refers to the center of a rotational movement. As noted
in [Wen06b, p. 50], “pivot” is also used to describe an interpreter in simultaneous interpreting
who translates from a less common language (e.g., Maltese) into an intermediate exchange
language (e.g., English). The translated text then forms the basis for a translation into other
languages. In Computer Science, previous adoptions of the term include the “pivot element” in
the sorting algorithm Quicksort. Milanovic et al. [MGG+06] introduce the notion of a “pivotal
metamodel” for the REWERSE Rule Markup Language (R2ML) which they employ for a two-
way mapping between the Semantic Web Rule Language in conjunction with the Web Ontology
Language (OWL/SWRL) and UML along with OCL. This report follows their proposition by
defining the “Pivot Model” as an intermediate metamodel used for aligning the metamodels of
arbitrary domain-specific languages with that of OCL.

1.4. ORGANIZATION OF THIS REPORT 3

1.4 Organization of this Report

1.4.1 Chapter Structure

This document is structured as follows: Chapter 2 provides the necessary theoretical foundations
and introduces the terminology used throughout the remainder of the report. This includes, in
particular, a discussion of the concept of metamodeling and a review of relevant standards.
Chapter 3 adds background information on tools and frameworks I have used for realizing the
practical aspects of this work. In Chapter 4, I analyze the core problems and requirements of this
project in detail and derive a conceptual framework that serves as a guidance for the remaining
chapters. Chapter 5 thoroughly investigates related work and outlines the respective strengths
and weaknesses. Additionally, I draw conclusions for my own work which is comprehensively
presented in Chapter 6. Finally, Chapter 7 concludes on this work and provides directions for
further research.

1.4.2 Typographical Conventions

To clearly distinguish semantically different elements and provide a visual hint to the reader,
this report uses the following typographical conventions:

• Italic script highlights important key words, scientific terms and proper names of patterns,
methods and tools carrying special meaning in the software engineering literature.

• Sans-serif font refers to elements contained in UML diagrams and other models if they
represent an abstract concept rather than the implementation in a programming language.

• Typewriter font is used for code listings and the names of classes, methods and other
code elements when referred to in the text.

• Bold face denotes table headers and items in enumerations.
• Blue text color represents hyperlinks referencing bibliography entries, sections, figures, etc.

in the PDF version of the document.

4 1. INTRODUCTION

5

2 Theoretical Foundations

This chapter reviews the key theoretical concepts, standards and technologies which this report
builds on. Among others, this includes an introduction to the many acronyms prevalent in this
field of study. The chapter starts with a comprehensive coverage of the concept of metamodeling,
including its importance for the definition of domain-specific modeling languages. It continues
by describing the four-layered meta hierarchy which forms the basis for most current approaches
to model-driven software development. In this context, I identify two important foundational
problems that need to be addressed to fulfill the aims of this report. Following is a brief outline
of the motivation and expected benefits of model-driven software development and an overview
of model transformation scenarios. Finally, I present a set of standards defined by the Object
Management Group (OMG) that are relevant in the context of this project.

2.1 Metamodeling

2.1.1 Overview

Metamodeling is one of the most important foundations of Model-Driven Software Development
(MDSD). Since an underlying objective of this report is to investigate new methods for sup-
porting MDSD, an introduction into the motivation and concepts of metamodeling becomes
necessary. For instance, Stahl and Völter [SV06, p. 85] have identified the following MDSD
challenges as being dependent on metamodeling:

• construction of domain-specific modeling languages

• model validation

• model-to-model transformations

• code generation

• tool integration

For this project, the aspects domain-specific modeling languages (Section 2.1.2), model validation
(Section 2.3.4) and model transformation (Section 2.2.2) are of special interest.

However, to properly describe metamodeling itself, I have to briefly review the concept of
models in general, with special regard to their use in software engineering.

Models

Models play an important role in most engineering disciplines. They are used in, e.g., architec-
ture and civil engineering as well as mechanical and electrical engineering. The application of
models in software development has a long tradition, too, with data modeling using the entity-
relationship methodology [Bal00, pp. 224] being just one well-known example. With the rise
of object-orientation during the 1990s and the development of the Unified Modeling Language
(UML) [OMGd] the use of models in software engineering has become even more popular.

6 2. THEORETICAL FOUNDATIONS

There is no mutually accepted definition of what a model actually is nor what its main
purpose should be. In addition, there is a current shift in the way models are seen - from
“simple sketches of design ideas” [Sei03] merely serving the purpose of documentation to first
class software development artifacts. Especially model-driven approaches promote the unifying
notion of “Everything is a model” [Béz05] in analogy to the object-oriented principle “Everything
is an object”.

For the purpose of this report, a less dogmatic view suffices. Following is a selection of
definitions that I consider appropriate as a reference for the remainder of this work:

“A model is a simplification of a system built with an intended goal in mind. The
model should be able to answer questions in place of the actual system.” [BG01]

“A model is an abstraction of a [..] system allowing predictions or inferences to be
made.” [Küh06]

“A model is an abstract representation of a system’s structure, function or behav-
ior.” [SV06]

The important observation here is that a model describes a system on a higher level of ab-
straction. This can be achieved by categorizing or classifying the different objects in the system
rather than creating one model element for each system element. It should be noted, though,
that the UML defines the concept of a snapshot [OMG05c, p. 55] to model the exact state of
a system at a particular point in time. Yet, in this report, I only consider models that indeed
abstract from the underlying system. This type of models has been called type models as op-
posed to token models [Küh06]. Even though abstracting, the model has to maintain enough
expressiveness that all its statements about the system are true [Sei03]. Finally, a model needs
to be written in a concise and non-ambiguous language. This simple relationship is summarized
in Figure 2.1.

System

describes

Model

Language

is written in

Figure 2.1: Models and languages (adapted from [KWB03, p. 17])

Modeling Languages

In principle, any language is suitable for creating models. The source code of a Java application,
for instance, can be considered a (comprehensive, but complex) model of the actual running
system. That is why, in line with [SV06, p. 18], I will clearly separate programming languages
like Java from dedicated modeling languages as defined below. Also, textual descriptions of
systems using natural language are not within the scope of this work. Modeling languages
as referred to in this report possess a human-readable, preferably visual notation that may be
complemented by formal, declarative textual expressions. A well-known example fitting this
definition is the Unified Modeling Language (UML) in conjunction with the Object Constraint
Language (OCL) (see Section 2.3.4).

2.1. METAMODELING 7

Like computer languages in general, a modeling language is specified by its syntax and se-
mantics [Bür05, p. 16]. The following distinctions are important:

Concrete Syntax The concrete syntax specifies the set of symbols and their arrangement in a
valid representation of a model. More precisely, it defines what “a parser for the language
accepts” [SV06, p. 57]. The graphical notation of the UML is an example for a concrete
syntax. Note that there may be several different concrete syntaxes for a language.

Abstract Syntax The abstract syntax describes the structure of a modeling language, i.e. it
specifies the concepts of the language and their relationships to each other. Thus, it
abstracts from representation-specific aspects such as the spelling of keywords or the shape
of graphical elements. For example, the concepts Class, Operation and Association are part
of the abstract syntax of UML.

Static Semantics The static semantics are a set of wellformedness rules over the abstract syntax
of a modeling language. They represent constraints that a model in that language has
to fulfill in order to be valid. As an example, the UML specification [OMG05c, p. 82]
disallows cyclic dependencies in inheritance trees by introducing the wellformedness rule
that a Classifier cannot be a subclass of itself.

Dynamic Semantics The dynamic semantics define the meaning and behaviour of instantiated
model elements. For instance, the UML Generalization element introduces the concept of
type conformance. Thus, an instance of a specific Classifier which is related to another
Classifier by generalization is also an instance of that general Classifier. Together, all UML
semantics describe what has been called the “theory of UML class modeling” [Sei03]. For
the purpose of this report, however, dynamic semantics are not relevant and I will not go
into more detail.

Now, a question that naturally arises is: How can the different aspects of a modeling language
be defined? To this end, MDSD rarely uses traditional language specification techniques such
as context-free grammars and declarative or operational semantics [HKKR05, pp. 321]. Instead,
models themselves are employed for this purpose.

Unfortunately, models are not capable of providing complete language specifications [Küh06].
In particular, the concrete syntax and dynamic semantics are difficult to define (though there
are approaches proposing dedicated concrete-to-abstract-syntax mapping models [VKEH06]).
As a practicable solution, the UML specification currently uses purely verbal explanations and
examples in natural language to denote its concrete syntax and dynamic semantics. Unsurpris-
ingly, this lack of mathematical rigour is one of the central points of criticism of researchers and
practicians alike [HKKR05, p. 48]).

This brings me back to the start of this section since these “language definition models”
introduced just now are called metamodels.

Metamodels

The Greek prefix “meta-” means after or beyond [MSUW04, p. 37]. As noted in [Küh06], “meta”
is often used when “an operation is applied twice”. Thus, a “meta-discussion” is a dicussion about
how to conduct a discussion, “meta-learning” means to learn general learning strategies.

In MDSD, a metamodel is a “model of the modeling language.” [MSUW04, p. 38]. More
precisely, a metamodel describes the possible structure of models written in that language, i.e.,
the “constructs of [the language] and their relationships, as well as constraints and modeling
rules” [SV06, p. 85]. Thus, a metamodel defines the abstract syntax and static semantics of
a modeling language. Figure 2.2 shows an excerpt from the UML metamodel depicting a few
basic class modeling constructs.

8 2. THEORETICAL FOUNDATIONS

Type TypedElement

TypedElement

Type

Parameter

Property

isReadOnly : Boolean = false
default : String
isComposite : Boolean = false
isDerived : Boolean = false 0..1

opposite

0..1

Operation

*

raisedException

*

*0..1

ownedParameter

* {ordered}

operation

0..1

Class

isAbstract : Boolean = false
*0..1

ownedAttribute

* {ordered}

class

0..1

*0..1

ownedOperation

*{ordered}

class

0..1

*

superClass

*

[0..1]

MultiplicityElement
(from Multiplicities)

TypedElement MultiplicityElement
(from Multiplicities)

MultiplicityElement
(from Multiplicities)

Figure 2.2: Excerpt from the UML metamodel [OMGc]

Obviously, a metamodel MM(L) defining a modeling language L is at a higher abstraction
level than a model ML written in L. From a conceptual point of view, the elements of the
metamodel are classifications of the different model elements — just like a model classifies the
objects in a real system.

Of course, since a metamodel is a model itself, it needs to be written in a modeling language.
This observation is illustrated in Figure 2.3. Now, if this language in turn is specified by a
metamodel one speaks of a meta-metamodel. In theory, this abstraction sequence could be
continued indefinitely but practice has shown that this does not yield any advantages (see
Section 2.1.3).

Model

Language

is written in

Metamodel

is defined by

Meta-
language

is written in

Figure 2.3: Models, languages, metamodels, and metalanguages (adapted from [KWB03, p. 84])

2.1. METAMODELING 9

2.1.2 Domain-Specific Languages

A domain-specific language (DSL) is a language that is “tailored to a specific application do-
main” [MHS05]. A domain can be defined as an “area of knowledge [that] includes a set of
concepts and terminology understood by practitioners in that area” [CE00, p. 34]. In contrast
to general-purpose languages (GPLs) such as Java or C#, a DSL may therefore only express
a limited set of concepts and is only suitable for a “specific class of problems” [Fow05]. The
degree of “domain-specificness” varies between different languages. For instance, COBOL may
be seen as a DSL for business applications or a full-featured third-generation programming lan-
guage [MHS05]. Often, a DSL is said to capture a domain’s ontology [GPvS02] (a term from
the field of knowledge engineering [GPFLC04]).

Due to the use of domain-specific notations and a reduced amount of required programming
expertise, DSLs offer a number of advantages over languages targeting a broader application
scope. Summarizing [MHS05, Fow05], these are:

• substantial gains in expressiveness and ease of use

• possibilities for optimized tool support (editing, pretty-printing, debugging etc.)

• increased developer productivity

• reduced maintenance costs

• larger target audience (software developers, managers, domain experts)

• opportunities for domain-specific optimization and parallelization

The idea of domain-specific languages is not new. DSLs have played an important role in
systems development for years. Table 2.1 lists some well-known representatives and their corre-
sponding application domain. It is worth pointing out that the scope and complexity of DSLs
varies greatly — from simple XML configuration files to full-blown visual notations [SV06,
p. 144].

DSL Application Domain
BNF Syntax specification
Excel Spreadsheets
HTML Hypertext web pages
LATEX Typesetting
Make / Ant Software building
MATLAB Technical computing
SQL Database queries and manipulation
VHDL Hardware design

Table 2.1: Examples of domain-specific languages (adapted from [MHS05])

An important characteristic of software development using DSLs is that typically several
DSLs are required to specify a complete application — each capturing one facet of the target
system [WK06]. This approach is also called language-oriented programming (LOP) [Dmi04].
Using multiple, modularly composable DSLs yields several benefits such as increased reusability,
scalability and fast feature turnover [CE00].

Recently, a convergence of model-driven software development and DSL engineering can be
witnessed [BJKV06]. This stems from the observation that both approaches share the idea
of language engineering as a means to describe systems. A number of proposals from indus-
try and academia (Microsoft Software Factories [GS04], MetaCase MetaEdit+ [MC07], ISIS
GME [LMB+01], and Eclipse GMF [GT06], to name just a few well-known representatives)

10 2. THEORETICAL FOUNDATIONS

further advance this evolution. It appears that, to a large extent, this development has been
triggered by the perceived inability of the UML to adequately specify the fine-grained aspects
of heterogeneous systems [HKKR05, p. 49]. Certainly, the concept of small, specialized DSLs is
appealing in comparison to the highly complex, monolithic UML Superstructure.

In brief, a DSL in model-driven engineering is defined as a modeling language whose abstract
syntax solely consists of the concepts from a particular problem domain. Whereas traditional
DSLs have been specified using a variety of methods (XML grammars, EBNF definitions etc.)
model-driven approaches employ metamodeling. A metamodel defining a domain-specific lan-
guage may thus be called a domain definition metamodel [BJKV06]. Finally, domain-specific
modeling (DSM) denotes the activity of designing and building systems using one or several
DSLs [Coo06].

Note that in some publications the terms modeling language and DSL are used interchange-
ably [SV06, p. 58]. However, this view blurs the distinction between general-purpose modeling
languages such as the UML and light-weight, specialized ones. Hence, I will not refer to the
UML as being a DSL in this work.

It is worth mentioning that the definition of a DSL is not complete without a concrete syntax
and an execution semantics definition (though the executability requirement is controversely
discussed [MHS05]). Typically, editors and generators are created for this purpose as soon as
the abstract syntax of a DSL has been specified [Fow05]. Within the context of this report, these
will mostly be visual model editors and code generation facilities. Tool support can significantly
ease this task (see Chapter 3).

Summing up, Figure 2.4 illustrates the concepts introduced so far using a UML-like notation.
Note that the dashed inheritance arrow conveys that an Abstract Syntax is realized by a Concrete
Syntax.

Meta-Metamodel

Metamodel

Model

Abstract Syntax

Concrete Syntax

Static Semantics

DSL

Dynamic Semantics

Domain
«describes concepts of»

«classifies»

«classifies»

«specified based on»

«specified using»

«gets meaning from»

«complies with»

Figure 2.4: Metamodeling, modeling and DSLs (adapted from [SV06, p. 56])

2.1. METAMODELING 11

2.1.3 The Four Meta Layers

The relation between models, metamodels and meta-metamodels as described in Section 2.1.1
has given rise to the idea of a layered architecture where each layer represents one level of
abstraction. Higher layers thereby rely on increasingly smaller sets of concepts to describe
the concepts in the layer below. At some point, there is no gain in defining another super layer
because the constructs available are sufficient to define themselves. Thus, the modeling language
defined by the metamodel can be used to model itself. At this level the metamodel is said to be
self-describing [MSUW04, p. 43] and a reflexive metamodel [Sei03].

An important observation here is that the meta relationship is a relative one [SV06, p. 86].
In theory, it does not make sense to call a particular layer — such as the one with the model of
the UML modeling language — a metamodel layer. This is because from a higher abstraction
layer this “metamodel” simply appears as a “normal” model and, consequently, the higher layer
should be labeled “metamodel” instead. Nonetheless, to avoid confusion a fixed designation
has proven to be quite useful in practice. One concrete example is the MOF metamodeling
architecture of the Object Management Group (OMG).

The MOF Metamodeling Architecture

MOF stands for Meta Object Facility [OMG06b]. Primarily, it is a meta-metalanguage for spec-
ifying metamodels. Besides the UML, other OMG metamodels have been defined using MOF,
such as the Common Warehouse Metamodel (CWM) [OMG03a], the Software Process Engineer-
ing Metamodel (SPEM) [OMG05b] and the Knowledge Discovery Metamodel (KDM) [OMG06a].
As a reflexive metamodel, MOF itself is specified using MOF, too.

In addition, the MOF provides a framework for the management of metadata and a set of re-
flective services for creating, querying, manipulating and deleting metamodel elements [HKKR05,
p. 328]. Declared design goal is to support interoperability between compliant metamodels and
facilitate standardized model data exchange and model access [MSUW04, p. 44]. To this end,
supporting standards such as XML Metadata Interchange (XMI) [OMG05a] and Java Metadata
Interfaces (JMI) [Sun02] provide mappings to other technologies (XML files and Java-based
model repositories, respectively).

In this report, only the metalanguage aspect of the MOF is of interest as it forms the basis
for the four-layer metamodel hierarchy1 on which the OMG suite of standards is built. Each
meta layer in this architecture carries an explicit identifier (M0 to M3) and clearly specifies
the kind of elements located on it. Lower layers are related to higher layers via an instance-of
relationship. The top-most layer (MOF) is an instance of itself. Figure 2.5 illustrates the MOF
hierarchy with a number of sample elements on each level. Summarizing [KWB03, pp. 85], the
different meta layers can be characterized as follows:

Layer M0: The Instances This layer contains the run-time instances of model elements in the
actual system. It is important to note that these instances manifest in various forms
(objects inside object-oriented applications, rows in a database table, components in a
distributed system), depending on the type of system being modeled. The key observation
here is that the actual appearance of M0 elements is undefined. In software systems
(and only those are within the scope of this report), they are just bits and bytes —
software representations of real world items. I stress this point so strongly as the imprecise
distinction of this matter in UML 1.x caused “endless semantic confusion” [RJB04, p. 403].

1 Interestingly, the MOF specification explicitly refrains from setting an upper bound for the number of meta-
levels. Actually, it is the UML specification that introduces the notion of four layers [OMG05c, p. 28].

12 2. THEORETICAL FOUNDATIONS

Fido x

-name : String
MOF::Class

M3: MOF

M2: UML -name : String
UML::Class

-name : String
UML::Property

M1: UML model -name : String
-weight : float

Dog

-class

0..1

-ownedAttribute

*

instance-of instance-of

instance-of instance-of
instance-of

M0: Instances

instance-of

Figure 2.5: The MOF metamodeling architecture

Layer M1: The Model This layer contains the model elements describing the system as outlined
in Section 2.1.1. Within the MOF architecture, a UML model resides on this layer.

Layer M2: The Metamodel This layer contains the elements of the metamodel, i.e. the con-
cepts of the modeling language used to create the model on layer M1. This is where
MOF-based metamodels such as the UML are located.

Layer M3: The Meta-Metamodel This layer only contains the MOF meta-metamodel as the
OMG’s standard M3 language.

Figure 2.6 shows the meta hierarchy that is the basis for the remainder of this work. It is a
slightly more generalized version of the MOF architecture. A notable difference is that I do not
restrict the meta-metalanguage to MOF. Indeed, partly due to lacking tool support for “true”
MOF-based modeling I will employ another modeling framework for the definition of custom
metamodels (see Chapter 3). Consequently, meta layer M2 may contain arbitrary DSLs and
is not limited to the suite of MOF-based standards. Finally, I have renamed the M0 layer to
System for better alignment with the terms introduced in Section 2.1.1.

The design of meta architectures is a non-trivial task and has been a focal point of research
in metamodeling for several years. An attempt to classify metamodeling concepts and hierarchy
design options can be found in [GH05]. Other publications [AK00, AK01, Béz05, Küh06] discuss
certain shortcomings of the MOF architecture in greater detail. Among others, the number of
meta layers, the kind of relationship between them and the representation of the “real world”
are controversial issues [HKKR05, pp. 329]. Here, I will concentrate on the aspects that have
immediate repercussions on the realization of my project goals. I call these the ontological
classification and the system instantiation problems. Note that the full impact of these problems
will only become obvious during the problem analysis presented in Chapter 4.

2.1. METAMODELING 13

M3: Meta-Metamodel

M2: Metamodel

M1: Model

M0: System

describes

describes

describes

instance-of

instance-of

instance-of

describes instance-of

Figure 2.6: A more generalized architecture (adapted from [SV06, p. 86])

The Ontological Classification Problem

Atkinson and Kühne have identified two separate orthogonal dimensions of metamodeling [AK03].
The so-called linguistic instantiation is the relationship between elements on different levels of
the classical four-layer meta hierarchy. This is metamodeling in the sense of language defini-
tion as presented in Section 2.1.1. However, within each layer there is an additional ontological
instantiation relationship that associates elements according to a particular problem domain.
Figure 2.7 illustrates this phenomenon with a simple example. As can be seen, the model el-
ement Dog is a linguistic instance of the meta element Class as well as an ontological instance
of Species — another M1 element. One can also say that Dog physically instantiates Class and
logically instantiates Species [AK02a]. Similarly, the element Fido (a model-level representation
of the actual M0 instance) is an instance of both Object and Dog.

M2

M1 Dog

Metaclass

Species Fido

Class Object

linguistic-instance-of linguistic-instance-of linguistic-instance-of

ontological-instance-of ontological-instance-of

ontological-instance-ofontological-instance-of

Figure 2.7: Linguistic and ontological instantiation

Although the MOF architecture has been criticized for not recognizing the two metamodel-
ing dimensions explicitly [AK02b], it indeed provides a mechanism for expressing ontological
relationships — using stereotypes and profiles. Figure 2.8 shows how the above-stated rela-
tionships can be expressed using actual UML metaclasses.2 This “light-weight” metamodeling
approach [HKKR05, p. 329] is controversial [AK00] but it yields one major advantage: Model
querying languages like OCL (see Section 2.3.4) that are defined based on linguistic concepts
(e.g, class, property and operation) can easily navigate on ontological entities (such as Dog).
Through physical instantation the M1 element Dog possesses all necessary features.

2 Contrary to depictions in many textbooks there is no dependency stereotype «instanceof» in UML to ex-
press ontological instantiation. In contrast, the stereotype «instantiate» may only be used between Classifiers
indicating that “operations on the client create instances of the supplier.” [OMG05d, p. 670]

14 2. THEORETICAL FOUNDATIONS

M2
(UML metamodel)

M1
(UML model)

Stereotype Class

name = "Fido"
weight = 25.5

fido : Dog

-classifier

«stereotype»
Species -name : String

-weight : float

«Species»
Dog

InstanceSpecification

Figure 2.8: Ontological instantiation using stereotypes in UML

The approach I am following in this report (that is, defining ontological concepts on meta layer
M2 in the form of a domain-specific language) creates significantly more challenges. To success-
fully use a language like OCL on models written in an arbitrary DSL, appropriate mappings
between ontological and linguistic concepts are necessary.

The System Instantiation Problem

A closer look at the meta hierarchy in Figure 2.6 reveals that the instance-of relationship between
the System and the Model layer is different from the other ones. Whereas the former crosses
the boundary between “model space” and “system space”, the latter all deal with instantiating
models from meta-models. This issue has prompted proposals to alter the view of the meta
hierarchy to a 3+1 architecture [BL97] and rename the connection between M0 and M1 to
represented-by [BG01, Béz05].

A way of dealing with this problem is the notion of an “interpretation” of model elements with
regard to the type of the system [Sei03]. An interpretation gives meaning to the model elements
on layer M1. For instance, classes in a UML model may be interpreted as Java classes. The
corresponding code can be generated by many standard UML tools. Then, the system level will
be the realm of Java objects. If arbitrary DSLs are used to create the model, an interpretation
needs to be provided by the writer of the DSL (e.g., in the form of a code generation definition).

A major implication in the context of this report is that creating new System layer instances
requires knowledge of the model’s interpretation. In Section 2.2.2, I will give an example for
this situation in the context of model transformations. One aim of this report therefore is to
find a mechanism to abstract from the way elements are instantiated.

2.2 Model-Driven Software Development

2.2.1 Overview

Model-Driven Software Development (MDSD), sometimes also called Model-Driven Engineering
(MDE) or simplified to Model-Driven Development (MDD), is an increasingly popular software
development methodology that has received much attention over the last years.

The core idea of MDSD is to promote models to primary development artifacts that are equal
to hand-written code. In fact, most of the code is supposed to be generated automatically.
Implementations for different platforms can be based on the same models. Thus, models may
even live longer than the code turning them into corporate assets for future reuse [MSUW04,
p. 10]. Code generation may also include other artifacts like configuration files or deployment
descriptors.

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT 15

Instead of mere documentation, models in MDSD constitute a vital part of the system and stay
consistent with the code over the entire software development lifecycle (SDLC). This contrasts
heavily with earlier attempts at incorporating models into the software development process
that often saw models quickly becoming outdated and out-of-sync with the actual implemen-
tation [KWB03, p. 2]. Addressing this paradigm shift, Stahl and Völter have emphasized the
distinction between “model-driven” and “model-based” approaches [SV06, p. 15].

MDSD requires models to be complete, precise, and consistent specifications of a system with
clearly-defined semantics. Then, unambiguous code generation becomes possible. Warmer and
Kleppe have identified six modeling maturity levels (MMLs), ranging from Level 0 (No Specifi-
cation), which represents ad-hoc coding without any specification, up to Level 5 (Models Only),
where no manual coding in a programming language is required any more. Current MDSD solu-
tions aim at Level 4 (Precise Models) where large parts of the implementation are automatically
generated and custom code is only required to fill the gaps. Architectural and design evolution
always happens on the Model level and changes automatically propagate through to the code.
This is an important difference to the roundtrip engineering approaches of the 1990s that usually
altered the code directly to reflect adjustments of an initial model. Diagrams then merely served
as a visualization of the updated design.

Among the main promises of model-driven software development are:

• increased productivity through automation of software production
• improved manageability of complexity through higher level of abstraction
• increased quality and reliability
• better maintainability and documentation
• easy portability to different platforms

In addition, MDSD can be the enabling technology for approaches such as Feature-Oriented
Programming (FOP) [BBGN01] and Product Line Engineering (PLE) [CN01] that seek to model
variability in software using so-called feature models. MDSD also eases the isolation of cross-
cutting implementation aspects such as transactions, persistence, or authentication, and thus
facilitates Aspect-Oriented Software Development (AOSD) [KLM+97]. A more detailed discus-
sion of the relationship between MDSD and AOSD can be found in [Völ05].

2.2.2 Model Transformations

Model transformations represent one of the cornerstones of Model-Driven Software Develop-
ment. They can be defined as “sets of rules describing how models that conform to a meta-
model are to be expressed in models that conform to a second (not necessarily different) meta-
model.” [KPP06c] In the context of the OMG Model-Driven Architecture (MDA) (see the next
section) they are also called Mappings [MSUW04].

Possible application areas include the transformation into models with lower abstraction level,
the integration of models written in different modeling languages (see Section 4.3.3), and the
generation of code artifacts. Czarnecki and Helsen provide a thorough classification of model
transformation approaches in [CH06]. Intensive treatments of the topic can also be found in
[Wen06b] and [Pöt06]. Requirements for model transformation engines are comprehensively dis-
cussed in, e.g., [KWB03, p. 73] and [SV06, p. 204]. Here, my main focus lies on the relationship
between model transformations and the meta hierachy introduced in Section 2.1.3.

Kurtev and van den Berg have identified several scenarios for model transformations [KvdB04].
An excerpt of their findings is shown in Figure 2.9. The left-hand side illustrates a typical model-
to-model transformation performed on the Model layer (M1). The right-hand side, however,

16 2. THEORETICAL FOUNDATIONS

introduces the novel notion of transformations on the System level (M0). Here, a relational
database is filled with data from a concrete XML document, based on mappings defined between
the DTD (Document Type Definition) of the XML file and the database schema. The example
demonstrates a use case that currently has to be implemented manually, e.g., using an XML
parser and a program written in a general-purpose language like Java. The need for similar
transformations over data has triggered the development of several specialized data query and
transformation languages (e.g, XPath [W3C07a] and XLST [W3C07b] in the XML domain).
Obviously, a common metamodel-based language for transforming heterogeneous data sources
is desirable.

M1

M0 Java objects

a UML
model

User data

a Java Class
model

M2 UML metamodel Java metamodel

Transformation M1

M0
a Relational
Database

a DTD

an XML
Document

a Relational
Schema

M2
DTD

metamodel
Relational

metamodel

Transformation

Figure 2.9: Model transformation scenarios

2.3 The OMG Standards

The Object Management Group (OMG) [OMGa] is an international industry consortium of
more than 800 companies dedicated to the standardization of enterprise integration technologies.
One of its main goals is to foster the interoperability and portability of software systems. It
is probably most well-known for its specifications of middleware platforms (e.g., CORBA —
Common Object Request Broker Architecture) and (meta-) modeling languages (e.g., MOF and
UML). In this section, I will have a look at the set of standards relevant in the context of
this report. The order of the presentation is such that each sub-section builds on the concepts
explained in the previous one. I start by describing the “Package Merge” mechanism as a
prerequisite for the modularization of MOF-based modeling languages and finish with a brief
overview of the MDA framework, the OMG’s contribution to the ongoing discussion about
model-driven software development.

2.3.1 Package Merge

Package Merge is a novel metamodel definition technique introduced with UML 2.0. It is heavily
used in the UML Superstructure Specification [OMG05d] to partition the language into four
increasingly expressive compliance levels [HKKR05, p. 316]. Package Merge is intended to ensure
the backwards compatibility of UML tools with XMI serializations from lower compliance levels.
The effectiveness of this approach has been questioned, though [ZDD06].

Package Merge is modeled as a directed relationship between two packages using a dependency
arrow with the stereotype «merge». Figure 2.10 shows a simple example.

In brief, the semantics of the Package Merge operation are as follows: The elements of the
merged package are redefined in the receiving package. Thus, the effective package contents of the

2.3. THE OMG STANDARDS 17

receiving package

Person

name : String

Student

studentNo : String

Thesis

title : String

writes

merged package

Person

name : String

Professor

officeNo : int
Thesis

dueDate : Date

supervises

«merge»

Figure 2.10: An example for Package Merge

resulting package is the union of the elements from both packages [HKKR05, p. 128]. Elements
that exist both in the merged package and the receiving package are merged into one element.
To determine candidates for a merge, by default the name and the metatype of the element
are considered. Special rules exist for associations, operations and relationships. Figure 2.11
describes the result of the merge depicted in Figure 2.10.

resulting package

Person

name : String

Student

studentNo : String

Thesis

title : String
dueDate : Date

writes

Professor

officeNo : int

supervises

Figure 2.11: The implicit result of the Package Merge

Note that the package resulting from the merge is implicit. Conceptually, there is “no [se-
mantic] difference between a model with explicit package merges, and a model in which all the
merges have been performed” [OMG05c, p. 158]. In the UML specification, most often an empty
base package merges several other packages to define a certain set of concepts.

2.3.2 The Common Core of UML and MOF

Due to different development histories, the 1.x versions of UML and MOF were structurally quite
different. Although both target object-oriented class structures, many fine-grained implementa-
tion details varied [Ock03]. With the release of UML 2.0 and MOF 2.0, the two specifications
have been aligned to share a common core of concepts. This minimal set of object-oriented
language elements is called Infrastructure [HKKR05, p. 324] and already constitutes a meta-
metalanguage that is expressive enough to specifiy a wide range of metamodels. Additionally,
it provides a rich and precisely defined set of meta elements to be reused in other metamod-
els on the same metalevel. The relationships between UML, MOF and the Infrastructure are
illustrated in Figure 2.12.

18 2. THEORETICAL FOUNDATIONS

UML

InfrastructureLibrary

Core
(from InfrastructureLibrary)

Profiles
(from InfrastructureLibrary)

MOF

Figure 2.12: UML, MOF and the Infrastructure Library

The Infrastructure is represented by the package InfrastructureLibrary. Two subpackages Core
and Profiles define the core concepts for modeling and the profile extension mechanism to de-
fine new UML-based languages, respectively [OMG05c, p. 12]. The Core package is further
subdivided into the packages PrimitiveTypes, Abstractions, Basic and Constructs. Of particular
importance is the Basic package because it forms the foundation for the Essential MOF (EMOF)
dialect of the MOF meta-metalanguage (see next section). Figure 2.13 gives an overview of all
elements in Core::Basic and their relationships.

DataType

EnumerationEnumeration
Literal

0..1* 0..1*

NamedElement

PrimitiveType

PropertyClass

* superClass*

0..1

*

0..1

*

Operation

0..1

*

0..1

*
Parameter

0..1 *0..1 *

Package

*

0..1

*

0..1

TypedElementType
0..1 *0..1 * *

0..1

*type

0..1

Element

MultiplicityElement

Figure 2.13: The elements of the Core::Basic package

2.3. THE OMG STANDARDS 19

2.3.3 Essential MOF

In an attempt to modularize the language definition, ease implementation and maximize interop-
erability, the MOF 2.0 specification defines a “kernel metamodeling capability” called Essential
MOF (EMOF) [OMG06b, p. 41]. It represents the subset of Complete MOF (CMOF) that
“closely corresponds to the facilities found in OOPLs and XML” [OMG06b, p. 43]. The explicit
specification of EMOF as a simple language for defining simple metamodels is motivated by the
observation that many metamodels do not require the expressive power provided by CMOF.
Experience from parallel developments, such as the Ecore metamodel of the Eclipse Modeling
Framework (EMF) (see Section 3.2), has significantly influenced this decision.

EMOF merges the Core::Basic package from the UML Infrastructure as well as additional
MOF packages which provide the metadata management facilities mentioned in Section 2.1.3.
This is shown in Figure 2.14. Note that this model has to be created in CMOF, because Package
Merge is not supported by Core::Basic. However, the resulting model (i.e., after all merges have
been performed) can be fully specified using EMOF concepts alone. Consequently, EMOF is an
instance of itself and a reflexive metamodel (see Section 2.1.3).

Basic
(from Core)

Identifiers
(from MOF)

Reflection
(from MOF)

EMOF
(from MOF)

Extension
(from MOF)

«merge»

«merge»

«merge»

«merge»

Common
(from MOF)

<<import>>

«merge»

Figure 2.14: Definition of EMOF using Package Merge

2.3.4 The Object Constraint Language

Usually, the expressiveness of a visual modeling language like UML does not suffice to achieve
the level of modeling precision required by MDSD (see Section 2.2.1). In particular, the defini-
tion of constraints restricting the set of valid model instances is not supported. In recognition
of this problem, the OMG has introduced the Object Constraint Language (OCL) as a “stan-
dard ’add-on’ to the Unified Modeling Language” [WK03]. OCL is a textual, side-effect-free,
and declarative language for the specification of validity rules over models in MOF-based lan-
guages. Typical usages are the definition of class invariants as well as pre- and post-conditions
of operations.

An important observation here is that OCL constraints are, in theory, modeling language-
independent [SV06, p. 97]. In particular, they can enrich both metamodels (M2) and models
(M1). Constraints on the Metamodel layer define the static semantics of a modeling language

20 2. THEORETICAL FOUNDATIONS

(see Section 2.1.1) and are usually called wellformedness rules. They are especially important for
the precise definition of domain-specific languages in the MDA framework [Gog01, GNR04]. Note
that a constraint always affects the instances of the constrained element on a lower metalevel,
i.e., wellformedness rules for a DSL are validated on models written in that DSL.

The second release of OCL [OMG06c] introduced major improvements to the language. In-
stead of a context-free grammar, OCL 2.0 is formally based on a MOF metamodel. The OCL
Standard Library, a collection of predefined types and operations on these types, can now prop-
erly be placed on the M1 Layer. Figure 2.15 illustrates the mapping between concrete and
abstract syntax and the relationship to the Standard Library.

OCL Standard Library

context Person
inv: age > 0

concrete syntax

abstract syntax

Person

age : Integer

Person : Class

age : Property

Integer : Primitive

> ; Operation

; Parameter Boolean : Primitive

: OperationCallExp

: PropertyCallExp

: IntegerLiteralExp
integerSymbol = 0

ownedProperty

referredProperty

type

type

type

type

source

referredOperation

type

ownedParameter

ownedOperation

argument

Figure 2.15: Concrete and abstract syntax of an OCL expression (adapted from [Ock03, p. 13])

Note that the OCL metamodel is precisely specified using OCL itself. This applies to well-
formedness rules, the abstract syntax mapping and the definition of additional operations on
UML metaclasses. As should be clear by now, the corresponding OCL expressions instantiate
the OCL metaclasses on a higher metalayer. Obviously, an initial implementation of an OCL
engine demands a bootstrapping process. In this report, I simply use Java for this purpose.

In addition to the new formal grounding, OCL 2.0 has matured “from a constraint language to
a full query language for object-oriented models” [HZ04]. Earlier works had already recognized
this potential [GR98]. Through the introduction of a tuple type, OCL 2.0 now has the expres-
sive power of queries formed in Relational Algebra [AB01]. As a result, new usage types (in
addition to those mentioned above) have been defined. These include initial and derived values
of properties, operation body expressions and the definition of new operations and properties
on classifiers.

2.3. THE OMG STANDARDS 21

2.3.5 Essential OCL

Essential OCL is the “minimal OCL required to work with EMOF” [OMG06c, p. 171] (Fi-
gure 2.16). It is structually identical to Basic OCL which exposes the OCL concepts required
to work with Core::Basic. This is not surprising since EMOF is built from Core::Basic (see Sec-
tion 2.3.3). Essential OCL is motivated by the same considerations as EMOF, namely, providing
a simple query and constraint language for simple metamodels. Since this already represents an
important step towards independence from the UML metamodel and application to arbitrary
domain-specific langauges, this report bases its theoretical and practical investigations on the
Essential OCL definition.

EMOF

EssentialOCL

Figure 2.16: Essential OCL depends on EMOF

Essential OCL is currently not very well-defined. The specification simply states that class
descriptions and wellformedness rules are to be reinterpreted for Core::Basic. Additionally, since
Core::Basic does not know the notion of Classifier, all Classifier references have been adapted to
reference the Type metaclass instead. Figure 2.17 shows the updated OCL type system resulting
from this reinterpretation.

VoidType DataType
(from EMOF)

Class
(from EMOF)

TupleType

SetTypeSequenceType BagTypeOrderedSetType

Type
(from EMOF)

CollectionType

0..1

*

elementType

0..1

collectionType

* PrimitiveType
(from EMOF)

InvalidType AnyType

Figure 2.17: The Types Package of Essential OCL

Unfortunately, this yields two significant disadvantages. Firstly, since Types in Core::Basic may
not possess operations, instances of the special OCL types AnyType, VoidType, and InvalidType
in the OCL Standard Library cannot contain their predefined operations. The specification

22 2. THEORETICAL FOUNDATIONS

recommends the workaround of providing an additional Class instance with the same name
that provides those operations. Similarly, Datatypes do not include the reference to Property.
To enable TupleTypes to define attributes as in complete OCL (i.e., as Property instances),
TupleType additionally inherits from Class. Without a doubt, these adjustments represent a
feasible, albeit cumbersome approach. In this report, I will aim to find a better solution to this
problem.

2.3.6 Query / View / Transformation

Query / View / Transformation (QVT) is the OMG answer to the problem of model transfor-
mations introduced in Section 2.2.2. It is a complex language and a discussion is outside the
scope of this report. An overview of the language architecture, a review of existing implemen-
tations and example model transformations realized in QVT can be found in [SV06, p. 203]
and [Wen06b]. In the context of this work, it suffices to note that QVT uses OCL (or rather
extensions of it) for querying models. Hence, any attempt to realize a QVT engine has to pro-
vide a solid OCL implementation as its base first. In the remainer of this report, my main focus
will lie on the discussion of a flexible design for OCL integration with regard to domain-specific
languages. Yet, the ultimate goal of this and following research is its application in the area
of model transformations. Consequently, some of the results presented in Chapter 6 have been
developed in the light of this long-term objective.

2.3.7 The OMG MDA initiative

In 2001, the Object Management Group (OMG) adopted the MDA framework. MDA stands
for Model-Driven Architecture and is, in the OMG’s own words, an “approach to using models
in software development“ [OMG03b]. From another point of view, MDA may be seen as a spe-
cialization of MDSD based on OMG standards [SV06, p. 63]. For instance, the MDA framework
assumes MOF as the meta-metamodel for specifying domain-specific languages. An alternative
and (due to lacking tool support for metamodeling) viable approach is the extension of UML
with profiles and stereotypes. Of the MDSD goals, the MDA particularly focuses on interop-
erability and portability, i.e., platform independence. To this end, it defines the concepts of
Platform Independent Model (PIM) and Platform Specific Model (PSM). PIMs are converted to
PSMs via model transformations..

23

3 Tools and Technology

In the previous chapter, I provided the necessary theoretical background on concepts and stan-
dards important in the context of this report. Continuing from there, I will now introduce the
practical technologies that were the basis for the prototypical implementation developed in the
course of this project. Since I have realized the entire functionality as a set of Eclipse plug-ins,
I will give an overview of the Eclipse platform as a runtime container for user extensions. In
addition, I will briefly describe the (meta-) modeling capabilities and code generation facilities
of the Eclipse Modeling Framework (EMF) as well as the Ecore metamodel it builds on. It is
worth highlighting that the information presented here lays out the foundation for most of the
examples and practical investigations contained in subsequent chapters.

3.1 The Eclipse platform

Eclipse is an “open development platform comprised of extensible frameworks, tools and runtimes
for building [..] software across the lifecycle” [Ecl]. Originally introduced by IBM as a powerful
Java IDE in 2001, the Eclipse project now hosts development environments for many other
languages and technologies as well as frameworks for a wide variety of application areas, including
web development [WTP], testing [TPT], reporting [BIR], and modeling [MDTa].

Fundamentally, Eclipse is a collection of plug-ins built around a very small runtime core. The
platform readily supports many common features in modern user interfaces, such as wizards,
editors and views, facilitating rapid development of rich client desktop application. Since the
example in Section 4.1 will be based on the Eclipse plug-in mechanism, I provide a brief discussion
here. A comprehensive coverage of the entire platform architecture and functionality can be
found, e.g., in [CR06].

The extensible design of the Eclipse platform is centered around the concept of extension
points which can be offered by plug-ins. The Eclipse Help System defines extension points as
“well-defined places where other plug-ins can add functionality”. Thus, of the two goals of object-
oriented framework design, Eclipse focuses on extensibility rather than variability [Aßm06].
Many extension points are already defined by the platform plug-ins (e.g„ to contribute new
editors, menus or toolbar items), but custom plug-ins may add their own to provide extensible
services.

Extension points are precisely specified with an XML Schema. Each extension point may
define several attributes where each attribute can either denote a String or Boolean value, the
path to a resource (e.g., an icon) or the name of a Java class. Plug-ins that wish to add custom
functionality need to declare an extension for an extension point. An extension is defined via an
XML fragment that conforms to the extension point’s XML schema. Conceptually, an extension
is an instance of an extension point providing concrete values for its attributes. For example, an
extension may define the text and icon for a new toolbar button and provide an implementation
of the IActionDelegate interface that performs the associated action. An extension which
contributes behavior by defining a Java class attribute is called executable extension.

24 3. TOOLS AND TECHNOLOGY

3.2 The Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [EMF] is a “powerful framework and code generation
facility for building Java applications based on simple model definitions” [BSM+03]. Its goal is to
enable data integration and interoperability for tools based on Eclipse as well as other platforms.
To this end, it provides an abstraction layer over the Eclipse plug-in concept introduced in the
previous section. EMF features metamodeling and code generation capabilities that strongly
resemble the MOF-to-Java mappings defined by JMI (see Section 2.1.3). Yet, in contrast to
the OMG suite of standards, EMF employs its own meta-metamodel called Ecore that is akin
to, but not identical with MOF (see Figure 3.1). Recently and mainly due to the introduction
of EMOF, a convergence of the two worlds can be witnessed, though. An assessment of the
relationship between EMF and OMG standards is presented in [Gro06].

EAttribute

EDataType

EEnumLiteral

EEnum

ENamedElement

EStructuralFeatureEClass

EReference

ETypedElementEPackage

EModelElement

EParameter

EClassifier

EOperation

Figure 3.1: The Ecore metamodel of the Eclipse Modeling Framework

EMF now has a large user community and is the basis for many open-source and commercial
projects. To a large extent, this popularity stems from the good integration with the ubiqui-
tous Eclipse platform. Also, in contrast to JMI, EMF generates simple and easy-to-use Java
code that does not depend on a complex repository infrastructure. From release 2.2 on, it is
even possible to flexibly adapt the entire code generation process. Another driving factor for
the success of EMF certainly is its comprehensive tool support. For instance, the framework
allows to automatically generate a highly customizable editor for a modeling language specified
in Ecore. Validation of Ecore metamodels via OCL or hand-written constraints is supported
as well. Finally, in conjunction with the Graphical Editing Framework (GEF) [GEF] and the
Graphical Modeling Framework (GMF) [GMF], building visual editors for domain-specific mod-
eling languages becomes significantly easier. All these features pave the way for an EMF-based
language workbench [Fow05] as introduced in Section 2.1.2.

25

4 Problem Analysis

In Section 2.1.2, I highlighted the growing trend towards small and specialized metamodels
in favour of monolithic, general-purpose modeling languages. This development encompasses
both the Meta-metamodel and the Metamodel level. In Section 2.1.2, I have already given
a brief overview of the possibilities for DSLs on the Metamodel layer. By far not as many
meta-metalanguages exist, but popular examples are EMF Ecore, which I introduced in the
previous chapter, and KM3 [BJ06], the language used to define the DSLs of the AMMA tool
suite [AMM]. This has significant impacts on the way model querying languages like OCL have
to be implemented. Whereas traditional approaches focused solely on an integration with UML
or, to a lesser degree, with MOF, this chapter will analyze the implications of applying OCL to
instances of arbitrary domain-specific languages.

After presenting a motivational example, I will categorize the usage scenarios for OCL along
two orthogonal dimensions. This classification is then extended by a conceptual research frame-
work which will serve as a guideline for the remainder of the report. This framework represents
one of the major contributions of my work as it allows to easily compare and evaluate existing
approaches to integrating OCL with multiple metamodels. In this context, I also provide a
thorough analysis of different model composition mechanisms highlighting their respective ad-
vantages and disadvantages. The chapter concludes with a concise requirements definition and
an outlook on the benefits of the Pivot Model concept that is the focal point of research in this
report.

4.1 A Motivational Example

Section 3.2 introduced the Ecore metamodel that is used to define EMF models. Ecore is an
example for a DSL on the meta-metalevel. It only provides a subset of the concepts available
in more complex metalanguages like MOF, but for most applications its expressiveness suffices.
To illustrate the use of OCL for models and metamodels that are not based on the OMG stack
of standards, I have devised a simple DSL modeled in Ecore. The DSL captures the concepts of
the Eclipse platform’s plugin mechanism and is accordingly coined Plugin Modeling Language
(PML). Its metamodel is shown in Figure 4.1.

4.1.1 The Plugin Modeling Language

PML models the containment relations between Eclipse features and associated plugins. It
also allows specifying extension points and services offered by these plugins. Each extension
point is assumed to declare an executable extension and, therefore, references a Java type that
contributing extensions must conform to. Java types are identified by their fully-qualified class
name. Note that this DSL is far from being complete. To keep the metamodel simple, I have left
out attributes which are not strictly required (such as human-readable extension point names
or descriptions). Also, I do not support the concept of additional extension point attributes.

As outlined in Section 2.1.1, a modeling language may have an arbitrary concrete syntax as
long as an unambiguous mapping to the abstract syntax exists. Figure 4.2 exemplifies a visual

26 4. PROBLEM ANALYSIS

ServiceParameter

name : String

Feature

id : String
name : String
version : String

ExtensionPoint

id : String

Service

name : String

0..*

1

parameters 0..*

service 1

JavaType

fullyQualifiedName : String

10..* type 10..*

1

0..*

returnType 1

0..*

1

0..*

type 1

0..*

Plugin

id : String
name : String
version : String
provider : String

0..*

0..1

plugins 0..*

feature 0..1

0..*

1 extensionPoints

0..*plugin

1

0..*

1 services

0..*plugin

1

1

1

activator1

1

Figure 4.1: Metamodel of PML

syntax in a model of the Eclipse RCP (Rich Client Platform) feature including the definition
of the Eclipse UI plugin and some of its extension points. Language workbenches, such as
the Eclipse Graphical Modeling Framework (GMF) [GMF], may significantly ease creating a
graphical editor for this concrete syntax from an abstract syntax model.

Eclipse UI

Eclipse RCP
id = org.eclipse.rcp

version = 3.3.0

id = org.eclipse.ui
version = 3.3.0

views

editors

menus

Figure 4.2: A PML model

4.1.2 Adding OCL expressions to Ecore and PML models

In model-driven software development, models need to be precisely specified (see Section 2.2.1).
This includes, among others, adding validity constraints and defining derived model properties
and operations. As discussed in Section 2.2.2, a query language for model transformations
is desirable as well. The Object Constraint Language is an obvious candidate to meet these
requirements.

As an example, consider the OCL constraints shown in Listing 4.1. They represent well-
formedness rules over PML models and, thus, are defined on the Metamodel layer (M2). As
described in Section 2.1.1, the abstract syntax representation of these expressions consists of
instances of concepts defined on the Meta-Metamodel level. In this example, these are in-

4.1. A MOTIVATIONAL EXAMPLE 27

stantiated elements of the OCL as well as the Ecore metamodel. As a result, the instance of
OCL::Expressions::PropertyCallExp that is created for the expression self.id has to reference
the EAttribute representing the id attribute. Yet, neither PML nor its metalanguage Ecore are
specified using UML or MOF, respectively.

� �
1 -- a Plugin must have a valid id
2 context Plugin
3 inv: self.id->notEmpty()
4

5 -- all Plugins in a Feature must be distinct
6 context Feature
7 inv: self.plugins->isUnique(plugin | plugin.id)� �

Listing 4.1: PML wellformedness rules expressed in OCL

To make this actually work, OCL would have to be integrated with the Ecore metamodel.
This is certainly possible [MDTb], especially given the great similarity between the Ecore and
the EMOF metamodels. Nonetheless, it requires a certain effort which, unfortunately, has to
be repeated for every new DSL. This leads to a proliferation of structurally identical OCL
metamodels that differ only in their binding to a particular metamodel.

As an example for this problem, consider the invariants in Listing 4.2 that refer to the PML
model introduced in the previous section. Obviously, these expressions are defined on the model
level (M1). Each plug-in extension point is here interpreted as a multi-valued attribute of its
owning plug-in that represents the list of extensions registered for that point. Note that the
semantics of an OCL query on elements of an arbitrary DSL may not be intuitive. For more
complex DSLs (especially those that bear little resemblance to the UML metamodel), several
valid interpretations may be possible. Thus, a binding of OCL with a DSL usually requires a
precise mapping definition which has to be provided by the implementor of the binding.

� �
1 context EclipseUI
2

3 -- there must be at least one view extension
4 inv: self.views->notEmpty()
5

6 -- extension must implement IViewPart
7 inv: self.views.isKindOf(org.eclipse.ui.IViewPart)� �

Listing 4.2: OCL constraints on a PML model

The two examples provided so far also illustrate the equally important problem of expression
evaluation. The expressions of Listing 4.1 are executed on meta layer M1, i.e., on actual PML
models accessible via the EMF infrastructure. This is fundamentally different from the second
case which specifies constraints for an actual running system. In the example, this is an Eclipse
workbench. Clearly, rewriting an OCL execution engine for each OCL binding is undesirable.

To sum up, not only do different DSLs require their own OCL binding, but some may even
be interpreted in several ways. In addition, OCL expressions may require specific execution se-
mantics for different DSL instances. The need for a uniform and flexible mechanism to integrate
OCL with arbitrary DSLs is evident.

28 4. PROBLEM ANALYSIS

4.2 Usage Scenarios

The previous section has already illustrated a number of usage scenarios for OCL in the context
of domain-specific languages. In this section, I will provide a more structured view on this topic.
This is meant as a precursor for the requirements analysis provided in Section 4.4.

The use of OCL can be classified in two orthogonal dimensions. Firstly, OCL execution
semantics vary strongly between model space (meta layers M1 and above) and system space
(M0). I introduced this phenomenon back in Section 2.1.3. Secondly, on each meta level OCL
is equally useful as a constraint and definition language for precise modeling as well as a query
language for model transformations. Recalling Section 2.3.4, the constraint language aspect
could be further subdivided according to the various forms of constraints supported by OCL.
Section 2.2.2 has shown examples for the model transformation facet.

Constraint Language Query Language
Model Space

(M1–M3)
Evaluation of DSL wellformedness
rules on models

Model-to-model transformations

System Space
(M0)

Evaluation of system invariants, de-
rived values, operations etc.

Data warehousing, data transfor-
mation

Table 4.1: Two-dimensional classification of OCL usage scenarios

Table 4.1 summarizes the ideas presented in this section by showing both dimensions of OCL
usage and corresponding application scenarios. The following sections will further elaborate on
this classification.

4.3 A Conceptual Framework

4.3.1 Overview

To guide my investigations and cleanly separate the different aspects of my work, I have devised
a simple research framework. All sections in Chapters 5 and 6 will be structured according to
this framework. In addition, this approach helps to limit the scope of this report. The elements
of the framework are shown in Figure 4.3.

Execution Level

Definition Level

Concepts Level

Figure 4.3: Three levels of OCL integration

The key observation is that integrating OCL with arbitrary domain-specific languages has
to occur on three different levels. Below is a short, introductory description of each level.
Subsequent subsections will provide a more thorough discussion. The descriptions use the notion
of a target language which I define as the domain-specific modeling language that is to be

4.3. A CONCEPTUAL FRAMEWORK 29

integrated with OCL. Models in this language are supposed to be enriched by OCL expressions
and are called target language instances.

The Concepts Level defines the metamodel of the target language whose elements are refe-
renced by the elements of the OCL metamodel.

The Definition Level establishes the links between the instantiated OCL metamodel elements
and a target language instance. These instances do not necessarily exist in the same model
repository.

The Execution Level is where an OCL engine (i.e., an interpreter or compiler) walks the object
graph of the instantiated OCL metamodel elements and applies its semantics to a concrete
instantiation of the target language instance.

M1

M0

a Plugin
Model

a Plugin
instance

M2 PML

M3 Ecore

Figure 4.4: OCL integration for execution in model space

I have deliberately chosen a new naming scheme for these levels rather than resorting to the
familiar terms employed in the meta hierarchy introduced in Section 2.1.3. This is because the
three levels can be shifted along the traditional meta layers depending on the concrete usage
scenario. Figures 4.4 and 4.5 exemplify this observation by showing the complete meta stack for
PML and its integration into my conceptual framework.

M1

M0

a Plugin
Model

a Plugin
instance

M2 PML

M3 Ecore

Figure 4.5: OCL integration for execution in system space

30 4. PROBLEM ANALYSIS

4.3.2 The Concepts Level

A domain-specific language that is supposed to be integrated with OCL needs to support a
number of concepts. Logically, defining operation call expressions does not make sense without
the notion of an Operation in the target language. However, the question arises whether it
is necessary to support all concepts supported by OCL. In fact, it is highly unlikely that an
arbitrary DSL will, to a large extent, be isomorphic to the UML metamodel which OCL has
been designed for. It may well be that several target language concepts in conjunction provide
the information required by a particular OCL abstract syntax element. Some aspects might
even be missing, can be deduced from the context or have a constant value for all instances of
the DSL metamodel. For instance, in Section 4.1, I interpreted the PML ExtensionPoint element
as a multi-valued attribute, i.e. from the OCL point of view this element will always have an
unlimited upper multiplicity bound.

The challenges of the Concepts Level are a direct result of the ontological classification problem
introduced in Section 2.1.3. As I have already stated there, mapping ontological concepts of a
DSL to the linguistic elements expected by OCL may often prove difficult, sometimes impossible.

Certainly, a DSL does not need to support all concepts provided by the UML to be OCL-
conformant. The Concepts Level therefore needs to address the question how far a metamodel
can be simplified while still offering a solid basis for OCL expressions. In the context of model
transformations and meta-hierarchy integration researchers have suggested graph-based meta-
models that essentially only define two concepts – nodes and lines [KvdB04, GFB05]. In theory,
every model can be expressed as an instance of this simple metamodel. Yet, due to the limited
expressiveness the resulting object graphs tend to become large and difficult to understand.
The complex diagram in Figure 4.6 depicting an excerpt of the MOF metamodel illustrates this
problem.

Figure 4.6: Graph-based representation of the MOF model (taken from [KvdB04])

4.3. A CONCEPTUAL FRAMEWORK 31

Evidently, this representation lacks clarity and may not be well-suited for OCL constraints
and queries. Furthermore, the entire static and dynamic semantics of the OCL metamodel would
have to be redefined to fit the graph-based metamodel. Section 4.5 will propose the idea of a
core Pivot Model as a solution.

4.3.3 The Definition Level

Once the OCL-relevant concepts of a target language have been identified, a mechanism has to
be found that enables connecting the instances of both the OCL metamodel and the DSL’s meta-
model. Generally-speaking, this is one of several metamodel composition problems, which re-
cently have started to receive more attention in the MDSD community [ES06, KPKP06, FBV06].

In the following, I will present selected metamodel composition techniques that seem adequate
to solve the OCL-DSL integration problem. Many solutions have been proposed, but I will limit
the discussion to those relevant in the context of this report. Beforehand, one more remark is
necessary: in a heterogeneous modeling environment, different forms of model repositories are
imaginable. The Netbeans Metadata Repository (MDR) [MDR] and the EMF infrastructure
(presented in Section 3.2) are well-known examples. Thus, a model integration approach should
ideally be suited for linking elements from arbitrary data sources.

Model Merge

Merging is one of the most obvious choices for composing related metamodels. Semantically
equivalent elements are merged into a single one whereas concepts without a corresponding
counterpart are simply copied into the resulting metamodel. Figure 4.7 shows a simplified
example. Current research focuses on two aspects of the merge. Firstly, how can semantically
similar elements be identified [FBV06], and secondly, what actual operation is used for the
merge [PB03].

Concepts

OCL engine

knows

Target DSL

Merged Model

operates on

Figure 4.7: Model composition using model merge

To address the first issue, experience from schema integration in relational databases has
proven to be useful [MZ98, DR06]. For instance, equal names or identifiers with a small Bayesian
distance may be evidence of similarity. More advanced methods also analyze structural congru-
ency and metamodel heuristics [FV07]. Finally, semi-automatic or manual methods requiring
user interaction [FBJ+05] as well as rule-based solutions [KPP06b] exist. A current trend is to
visualize the correspondences between two models using a dedicated linking or weaving model
which is itself an instance of an extensible weaving metamodel [SOE02, FBV06].

32 4. PROBLEM ANALYSIS

The second problem can be approached by many different means. The MOF Package Merge
mechanism, which was introduced in Section 2.3.1, operates on the package level and can thus be
understood as a “recursive unioning of model elements matched by name and metatype” [ES06].
It should be noted, though, that Package Merge merely implies the result of a merge, but does
not denote it explicitly. More fine-grained operations, such as the Class Equivalence operator
in MetaGME [LMB+01], permit merging on the class level. A recent development in Feature-
Oriented Programming (FOP) [BBGN01] and Product Line Engineering (PLE) [CN01] is the
use of graph-rewriting systems (GRS) to facilitate model compositions [HL06]. However, this
approach requires the metamodels to conform to the same meta-metalanguage. Other methods
focus on role-based designs and define template slots that are filled with elements from another
metamodel [ZL01, ES06]. Lastly, a very simple composition scheme is the inheritance relation
in object-oriented modeling languages.

Although metamodel merge appears attractive due to its simple basic concepts and well-
researched domain, it has some important drawbacks. To start with, merging elements that
are not based on a one-to-one mapping is difficult. Furthermore, the merged elements may
become “heavy-weight” and expose a bloated interface to clients like an OCL interpreter. Lastly,
integrating metamodels from diverse model repositories remains an open question. Hence, I will
not employ metamodel merge in my work.

Model transformation

An approach to model composition suggested by [Wen06b] is the use of model transformations.
Suitable transformation rules may convert a target language instance into the concepts repre-
sentation required by the client. Figure 4.8 illustrates this idea. For instance, Abouzahra et
al. discuss the transformation of arbitrary DSL models into corresponding UML representa-
tions [ABFJ05]. Since many UML-based OCL engines are readily available, this may be a
promising solution for easy OCL integration. Of course, OCL expressions that have originally
been defined for the target language instance need to be transformed as well, which may pose
difficulties.

Concepts

OCL engine

knows

Target DSL

transformation
specification

Figure 4.8: Model composition using model transformation

Time constraints did not allow me to further follow this interesting idea. Its biggest benefit
certainly is the use of a declarative transformation language like QVT or ATL to specify the
composition algorithm. Still, the problem of heterogeneous model repositories remains unsolved.

4.3. A CONCEPTUAL FRAMEWORK 33

Model interfacing

As outlined in Section 2.1.2, current research in the area of domain-specific languages aims at
describing a system with a variety of DSLs whose models are then composed to a complete
system specification. For instance, a model capturing requirements may be connected with a
GUI specification and a DSL instance describing the logical core. An answer to this problem is
model interfacing which essentially means the insertion of interface model elements that “glue”
together the different model parts [ES06]. The basic idea is captured in Figure 4.9. Foundational
work in this area is presented in [BSH99].

Concepts

OCL engine

knows

Target DSL

Interfaced Model

operates on

Figure 4.9: Model composition using model interfacing

However, to the best of my knowledge, model interfacing is not a mature engineering method-
ology yet. Currently, the integration process is often deferred until code for the target platform
has been generated [WK06]. Rather than composing on the model layer, code fragments ge-
nerated from individual models are integrated with appropriate “glue code”. Obviously, this
approach sacrifices a higher level of abstraction for practicability and feasibility. Indeed, the
model adaptation mechanism I have eventually used in this project (see below) follows a similar
pattern. The main difference is that model interfacing emphasizes the role of links between
models of equal priority whereas model adaptation employs an adapter layer that adapts one of
two domain-specific languages to the other.

Model adaptation

Model adaptation is a novel term for model composition that has not been described extensively
in the literature so far. I use it to denote the rather pragmatic, object-oriented approach
that I have realized for this report. Its core idea is to use a modern code generation facility
like EMF to create an interface layer in an object-oriented programming language such as Java.
These interfaces can then be implemented as adapters [GHJV95] to an arbitrary domain-specific
target language. Thus, an OCL processor can rely on the interface layer and does not need more
knowledge about the DSL behind it. A sketch of this idea is shown in Figure 4.10.

The benefits of this solution are its simplicity, flexibility and extensibility. Adapting the
structure of a target language using intuitive, imperative code provides practically limitless pos-
sibilities for an experienced developer. Integrating different model repositories does not pose
any problems either because implementation details can be hidden in the adapters. Finally, for
straightforward one-to-one mappings large parts of the implementation skeleton can be gene-
rated automatically based on given correspondences between the interface layer and the target
language.

34 4. PROBLEM ANALYSIS

Concepts

OCL engine

knows

Target DSL

adapts

Adapters

operates on

«realizes»

Figure 4.10: Model composition using model adaptation

Of course, when compared to a declarative, model-based mapping definition this approach
also reveals some significant disadvantages. In particular, it sacrifices platform independence
and generality. Furthermore, implementing the DSL integration in imperative code is more
error-prone and has fewer reuse potential. Essentially, all pro and contra considerations be-
tween traditional software engineering and model-driven development apply. Yet, I believe that
carefully designed, abstract layers of reusable integration code as well as code generation tech-
niques can achieve an acceptable tradeoff between flexibility and universality.

4.3.4 The Execution Level

The Execution level is actually outside the scope of this report. However, to provide a sound
basis for future work, I will include a brief discussion of this level when analyzing related work
(Chapter 5) and presenting the results of my project (Chapter 6).

The major challenge on the Execution Level is the integration of the OCL Standard Library
with the instance of the target language model. The predefined data types and operations of
the Standard Library have to be available to the OCL engine. However, a simple mapping
to a programming language like Java (as described in [WK03]) may not suffice due to special
execution semantics of the domain-specific type system. For instance, an OCL Real instance
does not necessarily map to a java.lang.Float. Similarly, collection and tuple types may
have domain-specific representations. Passing an OCL type to an operation of a domain object
thus requires a conversion.

In general, to support arbitrary DSLs, all types defined in the OCL Standard Library need to
be convertible to a domain-specific representation. Likewise, all domain-specific types have to
be reconverted when they are returned as the result of an operation or property call. Clearly, a
flexible and generic mechanism to facilitate these conversions is required. Ideally, the domain-
specific OCL representations themselves could capture some of this knowledge. In Section 6.1.3,
I will suggest an adapter-based solution addressing these requirements.

Another challenge to be met on the Execution Level stems from the system instantiation
problem introduced back in Section 2.1.3. If OCL is used in the context of object transformations,
it must be possible to create new instances of domain objects in the target system. Again, this
is highly DSL-specific. In the domain of Java programs, objects are instantiated using the new
operator. The semantics for creating rows in a relational database, however, are usually much
different.

4.4. REQUIREMENTS ANALYSIS 35

4.4 Requirements Analysis

Now that I have analyzed the problem domain and established a conceptual framework, I can
devise a concise list of requirements as a guide for the remainder of this report. The intent
of these requirements and their association with the different levels of my research framework
directly follows from the previous sections, so I will give no further explanations.

In summary, the goals of this report are:

1. capturing all concepts that may be supported by domain-specific languages in order to be
integrated with the Object Constraint Language

2. designing and implementing a flexible and extensible metamodel composition mechanism
to map arbitrary DSLs onto the concepts defined for the first requirement

3. providing means to enable this integration for heterogeneous model repositories
4. proposing a flexible and extensible mechanism for integrating the OCL Standard Library

with system objects from arbitrary domains

4.5 The Idea of a Pivot Model

Finally, I can properly put the central topic of this report in context. The first requirement
listed in the last section already points towards a central, common metamodel that contains all
the concepts (and only those) that are referenced by the OCL metamodel. In [Wen06b], the
term pivot model is introduced to describe such a metamodel. Given an integration scheme that
satisfies the second requirement from the last section, a pivot model could serve as a central
exchange format for models and metamodels in an MDSD environment. Precise modeling with
OCL and model transformations with an OCL-based language become possible on all metalevels
and for all domain-specific languages that have a mapping to and from the pivot representation.
The next chapter will investigate to what extent related works have already realized this level
of domain independence.

36 4. PROBLEM ANALYSIS

37

5 Related Work

This chapter thoroughly analyzes the respective strengths and weaknesses of three different
projects that, to a certain extent, already support the integration of OCL with multiple meta-
models. The chosen projects comprise the Dresden OCL2 Toolkit, the Kent OCL Library and
the Epsilon Platform. To the best of my knowledge, they represent the only published work
targeting similar goals as this report. The evaluation presented in this chapter is organized along
the structure of the conceptual framework introduced in Section 4.3.

5.1 The Dresden OCL2 Toolkit

5.1.1 Overview

The Dresden OCL Toolkit [TUD] is a collection of tools and libraries that has been under
development at Dresden University of Technology since 1999. The current 2.0 release features
a metamodel-based architecture [Ock03, LO04], which is built around the Netbeans Metadata
Repository [MDR], and a parser generated from an L-attributed grammar of OCL 2.0 [Kon03,
DHK05]. A comprehensive overview of the toolkit architecture and the tools developed around
it can be found in [Wen06b].

A remarkable feature of the current toolkit architecture is the implementation of a metamodel
integration mechanism. This stems from the fact that at the time of creation, the MOF and
UML metamodels had not yet been aligned and, thus, did not share a common core. In great
similarity to the ideas presented in Chapter 4, the toolkit accesses MOF and UML models via the
interfaces defined in a common metamodel. In the following sections, I will analyze the toolkit’s
implementation in respect to the conceptual framework I have introduced in Section 4.3.

Note that when the current version of the toolkit was developed, the OCL 2.0 specification was
still in its finalization stage. As a result, the most recent version of the specification [OMG06c]
deviates in some details from the metamodel implemented in the toolkit. I will point out some
differences in this chapter, but will leave other points for discussion when introducing my own
solution in Chapter 6.

5.1.2 The Concepts Level

To provide a common interface for both MOF and UML models, the Dresden OCL2 Toolkit
defines a CommonModel as part of a Common-OCL package which also contains the OCL Ex-
pressions and Types packages. The CommonModel represents an abstraction of the UML and
MOF metamodels that contains all the concepts referenced by the OCL metamodel. Obviously,
this corresponds to the Pivot Model idea presented in the previous chapter.

However, the scope of the CommonModel is significantly limited compared to the goals of
this report. Whereas the Pivot Model is supposed to provide a common base for an arbitrary
number of domain-specific languages, the CommonModel merely serves as a bridge between the
structurally different metamodels of UML 1.5 [OMGb] and MOF 1.4 [OMG02]. This is reflected

38 5. RELATED WORK

by its design which, to a large extent, corresponds to the UML metamodel, leaving out only a
few metaclasses that are not relevant for the binding to OCL. The biggest disadvantage of this
approach is that structural deficiencies and conceptual flaws of the UML 1.5 metamodel also
exist in the CommonModel.

DataType

Package

Primitive

Reception

Signal

DirectionKind
<<enumeration>>

in
out
inout
return

NonOclClassifier

Feature

BooleanExpression
Enumeration

EnumerationLiteral

0..1

0..*

0..1

literalA

0..*

Multiplicity

Operation

Parameter

0..*outParametersA 0..*
0..*inParametersA 0..*
0..*parametersA 0..*

0..1returnParameterA 0..1

Expression

Constraint

0..1

0..1

0..1

bodyA 0..1

ModelElement

/ nameA : String

0..1

constrainedElementA

0..1

TypedElement

Classifier1

typeA

1Attribute

AssociationClass

AssociationEnd

0..*
qualifiersA

0..*

2..*

endsA

2..*

 Figure 5.1: The CommonModel of the Dresden OCL2 Toolkit

Figure 5.1 shows the inheritance hierarchy of the metaclasses in the CommonModel (note that
the suffix A in the derived attribute nameA stands for “abstract” and is a special naming con-
vention in the Toolkit to highlight the difference between the CommonModel and the integrated
metamodels of UML and MOF). Following is a list of observations that serve as a guide for the
design of my own Pivot Model.

To begin with, the CommonModel contains a number of UML-specific metaclasses such
as Signal, AssociationClass and Reception. Clearly, including these classes is undesirable when
aiming for generality in regard to arbitrary domain-specific languages. This does not necessarily
mean a loss in expressiveness because concepts of behavioral modeling languages may be mapped
to more basic Pivot Model classes. Section 4.1 argued that, given a proper interpretation,
different semantics may be achieved with OCL expressions.

Another issue worth highlighting is the metaclass NonOclClassifier that is mixed into the MOF-
and UML-specific implementations of the CommonModel Classifier concept. It defines an oper-
ation toOclType that maps predefined MOF and UML data types to the corresponding OCL
types. Unfortunately, this design introduces dependencies from the CommonModel to the
OCL metamodel. In the current toolkit architecture this does not pose major problems, be-
cause the CommonModel is part of the Common-OCL package anyways. In this project, however,
I will strive to achieve a layered architecture, where the Pivot Model is free of external depen-
dencies. This paves the way for the integration with different constraint and query languages
and also allows for a cleaner system architecture (see Section 6.2).

5.1. THE DRESDEN OCL2 TOOLKIT 39

A problem that stems from the legacy of the outdated UML metamodel is that Operation
does not extend TypedElement. In fact, the UML 1.4.2 specification [OMG04] does not even
define the abstraction TypedElement. In contrast, most modern metamodels for class structures
define a type for operations which usually corresponds to the operation’s return type. Hence,
this notion should be included in the Pivot Model as well. A beneficial side effect is the simpler
type evaluation of OCL operation call expression.

Finally, a useful pattern in the design of the CommonModel is the use of multiple inheri-
tance to mix in properties shared among disjunct sets of meta classes. For instance, Parameter
is a TypedElement just like Attribute and AssociationEnd, but it does not share the inheritance
from Feature, which, on the other hand, is extended by Operation. Seemingly, metamodels often
contain those overlapping inheritance structures. Sometimes, it may be possible to construct a
hierarchy using only a single line of inheritance but I do not see the benefit of doing so. After
all, this usually only serves to provide implementation reuse when metamodels are mapped to a
concrete representation (e.g., Java classes). On the conceptual level, using multiple inheritance
to define semantically distinct features of metaclasses should be preferred.

5.1.3 The Definition Level

Model composition

The current Dresden OCL toolkit implementation uses inheritance for model composition. Fi-
gure 5.2 exemplifies this for the inheritance relationships between the CommonModel elements
Classifier and Operation and their corresponding counterparts in the UML metamodel.

Common-OCL
<<metamodel>>

CommonModel
(from Common-OCL)

CollectionType
(from Types)

Classifier
(from CommonModel)

Operation
(from CommonModel)

UML
<<metamodel>>

Operation
(from Core)

Classifier
(from Core)

UML-OCL
<<metamodel>>

CollectionType
(from Types)

Figure 5.2: Inheritance as metamodel composition technique in the Dresden OCL2 Toolkit

One major drawback of this approach is that an additional UML-OCL package is necessary
to define the OCL elements that inherit from UML metamodel classes. Every new binding
of a DSL with OCL requires such a metamodel-specific package for the OCL elements. The

40 5. RELATED WORK

reason is that associations on the CommonModel level cannot be reused within the DSL-specific
metamodel. Note that the CommonModel elements Classifier and Operation are not connected
via an association. In essence, this is an example of the Class Adapter design pattern [GHJV95]
and the resulting disadvantages of mixing interface and implementation inheritance. Although
the interfaces for the specific OCL elements can be generated automatically, about 800 lines of
implementation code are duplicated in the Expressions and Types packages of the UML-OCL and
MOF-OCL bindings, respectively.

Moreover, this approach alone does not suffice to integrate languages with a structure that
is different from the UML. Consequently, the MOF-OCL package provides an additional set of
adapters that realize the CommonModel semantics using a combination of the Class and Object
Adapter pattern. Figure 5.3 illustrates the principle for the CommonModel Datatype element
which is mapped to the MOF Datatype metaclass. The adapter class AdDataType additionally
needs to extend MOF::Class because Datatypes in MOF do not possess Operations.

Common-OCL
<<metamodel>>

Classifier
(from CommonModel)

DataType
(from CommonModel)

MOF-OCL
<<metamodel>>

MOF
<<metamodel>>

Class
(from Model)

Classifier
(from Model)

Datatype
(from Model)

AdDataType
(from Adapters)

mofType

oclType TypeMapping

Figure 5.3: Metamodel adaptation in the Dresden OCL2 Toolkit

Accessing different model repositories

The original design of the Dresden OCL2 Toolkit did not allow evaluating OCL constraints over
models stored in other repositories. The metamodels of OCL and the target language were
integrated in the Netbeans MDR and their instance models were assumed to be loaded into the
same repository. These shortcomings were addressed when the toolkit was integrated [Stölzel05,
SZG06] with the Fujaba Tool Suite [Fuj]. Figure 5.4 gives an overview of the mechanism devel-
oped for this purpose.

The core idea of the new design is to represent model elements in the custom repository
with proxy objects stored in the Netbeans MDR. Instances of the OCL metamodel elements
then reference these proxies. A central Singleton class called ModelFacade maps between the
different representations using the MOF identifier of the proxy in the MDR as a key. Navigating
the model and accessing properties of the model elements is solely done via the ModelFacade.
To this end, it provides getter methods representing the union of all attributes and associations
of each metaclass defined in the UML metamodel.

5.1. THE DRESDEN OCL2 TOOLKIT 41

Netbeans Metadata
Repository (MDR)

Custom
Repository

ModelFacade

getRefObject (mofID : String) : Object
getFeature (mofID : String) : List
getName (mofID : String) : String
getMultiplicity (mofID : String) : Multiplicity
getOrdering (mofID : String) : OrderingKind
getQualifier (mofID : String) : List
getNamespace (mofID : String) : Namespace
getUpper (mofID : String) : int
...

mofId refObject

7D749D32-…:00036B
7D749D32-…:000364
7D749D32-…:00035E
7D749D32-…:000352

HashMap<String,Object> refObjects

Figure 5.4: The ModelFacade design of the Dresden OCL2 Toolkit

Evidently, this design yields a number of disadvantages. Most importantly, accessing model
properties via a central class crosscuts the implementation of every meta element and thus
results in very monolithic and inflexible code that is difficult to maintain. Secondly, placing
all accessor methods of a metamodel in a single class violates the object-oriented principles
of encapsulation and separation of concerns. Keying the custom repository elements via the
MOF identifier poses additional problems for compile time type checking. Finally, the interface
provided by the ModelFacade solely targets UML models and cannot easily be readjusted for
arbitrary domain-specific languages.

5.1.4 The Execution Level

The Dresden OCL2 Toolkit currently features a Java code generator for wellformedness rules
over MOF metamodels [Ock03] and constraints defined on UML model elements [Bra06].1 The
generated code uses an extended version of the OCL Standard Library implementation presented
in [Fin99]. Its class hierachy is shown in Figures 5.5 and 5.6. Note that the second diagram
represents the meta programming layer of the OCL Standard Library which is required for
class-scope operations and runtime type checking (e.g., in oclIsKindOf).

Unfortunately, the current Standard Library implementation fails to fulfill the requirement of
enabling domain-specific representations for all OCL predefined types (see Section 4.3.4). Adapt-
ing the instances of domain-specific languages is only possible for objects, types, enumeration
literals and enumeration types. Figures 5.5 and 5.6 show the corresponding implementations for
MOF and UML with a yellow fill color (note that the current version of the toolkit does not yet
provide an implementation of OclEnumLiteral and OclEnumType for UML). In contrast,

1 Additional generators allow to transform integrity rules over data models into corresponding SQL con-
straints [Hei05] or declarative code [Hei06].

42 5. RELATED WORK

OclRoot
<<interface>>

OclAnyOclCollection OclUndefined

OclOrderedSet

OclSequence

OclBag

OclSet OclBooleanOclEnumLiteral OclRealOclString OclTuple

OclIntegerJmiEnumLiteral

OclModelObject

JmiModelObject UmlModelObject

Figure 5.5: The Standard Library implementation of the Dresden OCL2 Toolkit (Objects)

the OCL primitive types as well as the collection types have fixed implementations backed by
suitable Java types.

OclType

OclCollectionType OclEnumType OclModelType

JmiModelType UmlModelType

OclPrimitiveType OclTupleType

JmiEnumType

Figure 5.6: The Standard Library implementation of the Dresden OCL2 Toolkit (Types)

Converting objects between the OCL representation and the target language instance is accom-
plished through an interface OclFactory and its methods getOclRepresentationFor and
reconvert. Metamodel-specific implementations of this interface (currently JmiOclFactory
and UmlOclFactory) are realized as Singletons which are accessed by the generated code. Fi-
gure 5.7 exemplifies the core principle showing the conversion to and from JMI representations,
respectively.

Once again, the current design relies on a central entity doing all the work which hinders
encapsulation and worsens maintainability. Indeed, the complex control flow in the reconvert
method in JmiOclFactory causes a very high McCabe Cyclomatic Complexity [MW94] of 59.2

Another issue adding complexity is that both conversion methods in OclFactory require an
explicit target type to be specified. The motivation is to denote the expected OCL or domain-
specific type, respectively, since it cannot always be deduced from the other representation.
However, a look at the implementation reveals that this parameter is only effectively used in
two circumstances:

2 The McCabe Cyclomatic Complexity measures the number of linearly independent paths through a function,
module or program and is a good indicator of its complexity.

5.1. THE DRESDEN OCL2 TOOLKIT 43

JmiOclFactory

getInstance(model : RefPackage) : JmiOclFactory
getOclRepresentationFor(type : OclType, o : Object) : OclRoot
reconvert(targetType : NonOclType, oclObject : OclRoot) : Object
getOclModelTypeFor(pathname : String) : OclModelType
getOclEnumTypeFor(pathname : String) : OclEnumType
getOclTupleType(names : String[], types : OclType[]) : OclTupleType
...

OCL Space

OclModelObject

OclModelType
OclEnumLiteral

OclSequence

JMI Space

RefObject

RefClass
RefEnum

java.util.List

Figure 5.7: Converting between OCL and JMI representation in the Dresden OCL2 Toolkit

• a domain-specific collection instance (e.g., java.util.Collection) needs to be con-
verted to the correct OCL type (OclSequence, OclSet)

• an OCL primitive type (e.g. Integer) needs to be reconverted to the domain-specific
type (java.lang.Integer, java.lang.Long, etc.)

I argue that both cases can be approached differently. To convert collection instances, dedica-
ted methods for each of the OCL collection types can be provided. It is unlikely that the number
of collection types will increase dramatically in a future OCL specification, so this should not
result in serious maintenance issues. Interestingly, my suggestion resembles the approach of the
original Standard Library implementation in [Fin99]. The other problem of reconverting prim-
itive types to their domain-specific representation is minimal in the context of domain-specific
languages because the set of possible target language types will usually be limited. Modern
programming language features such as automatic type conversion and automatic boxing and
unboxing of primitive types should eliminate the need for an explicitly specified target type.
After all, the current implementation also relies on these language capabilities to reconvert OCL
primitive types into their corresponding primitive Java types (boolean, int, etc.).

An additional deficiency of the current Standard Library design emerges when considering its
use in an (envisaged) OCL interpreter. Figures 5.8 and 5.9 highlight the problem by showing se-
lected operations of the Standard Library classes. Of particular importance are the getFeature
methods in OclModelObject and OclModelType that allow retrieving property values and
invoking operations on domain-specific objects and types.

Now, the key observation here is that predefined OCL operations (such as the iterator opera-
tions in OclCollection or the oclAsType operation in OclAny) cannot be called reflectively
because the necessary getFeature method is only defined for OclModelObject. This applies
similarly to operations in OclType (e.g., allInstances). This does not pose any problems
for code generation because the method call is simply written to the generated Java file. How-
ever, an interpreter must be able to call all operations reflectively, even those defined in the
OCL Standard Library.

Unfortunately, simply refactoring getFeature into the OclRoot interface does not suffice
either. Consider that getFeature(type,name,parameters) takes OclRoot objects as pa-
rameters (wrapped into OclParameter instances). Since OclType does not extend OclRoot,

44 5. RELATED WORK

OclRoot

isEqualTo()
isUndefined()
oclIsKindOf()

<<interface>>

OclAny

oclAsType()

OclCollection

forAll()
exists()
isUnique()
any()
isEmpty()
includes()
size() OclModelObject

getFeature(type, name)
getFeature(type, name, parameters)

OclString

concat()

Figure 5.8: Excerpt of Standard Library operations in the Dresden OCL2 Toolkit (Objects)

OclType

allInstances()
isOfType()

OclModelType

getFeature(type, name)
getFeature(type, name, parameters)

OclEnumType

getLiteralFor(name)

OclTupleType

make(names, types)

Figure 5.9: Excerpt of Standard Library operations in the Dresden OCL2 Toolkit (Types)

5.2. KENT OCL 45

operations with type arguments (e.g., oclAsType or oclIsKindOf) cannot be called reflec-
tively.

Finally, the current design requires a specialized code generator for each repository technology
and metamodel. This stems from the fact that the concrete OclFactory implementation as
well as the model format are directly written into the resulting Java file. Listing 5.1 shows
an example created by the JMI code generator. Naturally, an abstraction for different model
repositories is desirable, particularly with regard to an OCL interpreter.

� �
1 public class OclEvalBooleanLiteralExp {
2 private RefPackage model;
3

4 public OclEvalBooleanLiteralExp(RefPackage model) {
5 this.model = model;
6 }
7

8 // invariant BooleanLiteralExpWFR2 : true
9 public boolean evaluateBooleanLiteralExpWFR2() {

10 final JmiOclFactory tudOcl20Fact0 = JmiOclFactory.getInstance(model);
11 final OclBoolean tudOcl20Exp0 = OclBoolean.TRUE;
12 return tudOcl20Exp0.isTrue();
13 }
14 }� �

Listing 5.1: Generated code with dependencies to the model repository technology

In summary, the current Standard Library implementation in the Dresden OCL2 Toolkit
does not satisfy the requirements for an integration with arbitrary domain-specific languages.
Converting objects between OCL and domain space is cumbersome. Furthermore, it lacks the
reflective capabilities and abstraction required by an OCL interpreter. In Section 6.2, I will
suggest an alternative design that addresses these issues.

5.2 Kent OCL

5.2.1 Overview

The Kent Object Constraint Language Library [WWW] has been developed under the Kent
Modeling Framework (KMF) project [KMF] at the University of Kent at Canterbury. It fea-
tures an OCL parser, analyzer, evaluator and code generator [ALP03, AP04]. Most notably, it
defines a Bridge metamodel as an abstraction over a number of different metamodels and pro-
vides implementations for Java, KMF and EMF. Thus, it follows a similar approach to the one
presented in this report. The research in this area appears to be discontinued, though. Recent
publications instead focus on detaching the OCL Standard Library from the language defini-
tion [AHMM06]. The following subsections will provide an analysis of the Kent OCL library
within the bounds of the research framework presented in Section 4.3.

5.2.2 The Concepts Level

The structure of the Bridge metamodel is shown in Figure 5.10. Apparently, it is a heavily
simplified version of the UML metamodel and barely resembles the Dresden OCL Toolkit Com-
monModel presented in Section 5.1.2. Naturally, the question arises whether such a reduced

46 5. RELATED WORK

metamodel offers the amount of expressiveness required by an OCL engine. I argue that it does
not, but its analysis was useful in revealing many important design considerations that I have
incorporated in the Pivot Model.

ModelElement

name : String

Property

type : Classifier

Classifier

operations : List

Datatype

OclModelElementType PrimitiveEnumLiteral Enumeration

1..*

literal

1..*

enumeration

Operation

returnType : Classifier
parameterTypes : List
parameterNames : List

CallAction

operation

Signal

parameterTypes : List
parameterNames : List

SendAction

signal

Namespace

namespace

Figure 5.10: The Bridge metamodel of the Kent OCL Library

To begin with, the Bridge model does not support the notions of multiplicities and static
features. Yet, the first concept is vital to support multi-valued model properties (and the im-
plicit collect iterator operation) whereas the second is required for class-level property and
operation calls. More of a cosmetic problem than an actual deficiency is the lack of an abstract
metaclass TypedElement, although it would provide a better abstraction for the returnType at-
tribute in Operation and the type attribute in Property.

Leaving out a Parameter metaclass is controversial, too. Certainly, it is not required to lookup
Operations contained by Classifiers because only the types of the arguments count. Even so, a
dedicated Parameter meta element allows for the definition of different parameter kinds (in, out,
inout) which is explicitly supported by OCL.

An interesting observation from the Bridge model is that the Datatype metaclass is not actually
required. Datatypes differ semantically from other Classifiers in that they are “identified only
by their value” [OMG05d, p. 73]. For an OCL engine, this difference is irrelevant. Indeed, the
corresponding interface in the Kent OCL implementation is empty and can be omitted. I will
come back to this idea in Section 6.1.1.

In Figure 5.10, the two new metaclasses OclModelElementType (which represents user-defined
types) and Primitive (which is the renamed UML PrimitiveType) have no visible connection to
the other Bridge classes. This originates in an attempt to provide more consistency between the
OCL metamodel and the OCL Standard Library. Rather than directly inheriting from Classifier
or Datatype, primitive types and user-defined types derive from the OCL AnyType. Figure 5.11
displays the effects of this approach on the OCL Types package.

Compared with Figure 2.17 from Section 2.3.5, the structure of the Types package is signi-
ficantly different. Main changes are the addition of the OclModelElementType and an altered
inheritance hierarchy where AnyType (named OclAnyType here) becomes the superclass of non-

5.2. KENT OCL 47

OclMessageType Datatype
(from Bridge)

Classifier
(from Bridge)

CollectionType

elementType

VariableDeclaration

TupleType

0..* partType0..*

OclAnyType

OclModelElementType
(from Bridge)

Primitive
(from Bridge)

StringType BooleanType RealType

IntegerType

TypeType

OrderedSetType SetType SequenceType BagType

VoidType

Figure 5.11: The adjusted OCL Types package of the Kent OCL Library

48 5. RELATED WORK

collection types, and VoidType descends from all other types. Essentially, the OCL metamodel
(M2) has been aligned with the OCL Standard Library (M1).

However, this approach suffers from a fundamental conceptual flaw. In the MOF metamod-
eling architecture, inheritance relations are not propagated to a lower metalevel. This is easy
to see when considering the primitive type Boolean which is an instance of the meta element
Primitive. Even though Primitive extends Classifier on the M2 level, there is no corresponding
inheritance relationship between Boolean and an arbitrary Classifier instance defined on M1. In
particular, this does not yield the intended result of making Boolean a subtype of OclAny.

The only way to model cross-metalayer dependencies is the UML concept of powertypes. A
powertype is a “metaclass whose instances are subclasses of a given class” [RJB04]. Conse-
quently, modeling Primitive (M2) as a powertype of OclAny (M1) symbolizes that all instances
of Primitive derive from OclAny. An inheritance relation between Primitive and OclAnyType on
the Metamodel layer is not required. In fact, AnyType really only adds a semantic difference
to the Classifier metaclass. It does not define any additional features, so its only benefit is that
the single instance OclAny can be differentiated from “normal” Classifier instances in a meta
repository via an instanceof check.

A noteworthy feature of the Kent OCL Library is the existence of an explicit model for context
definitions (Figure 5.12) which does not rely on UML stereotypes to denote the various types
of constraints supported by OCL. This paves the way for supporting constraints over arbitrary
modeling languages. Unfortunately, in its disregard for the top-level concept ExpressionInOcl, the
Kent OCL solution deviates strongly from the OCL specification [OMG06c, p. 159]. Moreover,
it does not readily map to the UML/MOF 2.0 model of constraints which severely hinders an
alignment with repositories realizing the new standards.

ConstraintKind

INIT : ConstraintKind
DERIVE : ConstraintKind
INV : ConstraintKind
DEF : ConstraintKind
PRE : ConstraintKind
POST : ConstraintKind
BODY : ConstraintKind

<<enumeration>>

Namespace
(from Bridge)

Classifier
(from Bridge)

ClassifierContextDecl

referredClassifier

PropertyContextDecl

OclExpression
(from Expressions)

ContextDeclaration

referredNamespace

Property
(from Bridge)

referredProperty

OperationContextDecl

Operation
(from Bridge)

referredOperation

Constraint

name : String
kind : ConstraintKind

bodyExpression

0..*

constraint

0..*

context

defProperty

defOperation

Figure 5.12: Model of context definitions in the Kent OCL Library

In conclusion, I do not consider the Bridge metamodel sufficient to meet the goals of this
report. In particular, I wish to avoid a tight coupling between the OCL metamodel and the
Pivot Model. In the Kent OCL Library, a clean separation of OCL and Bridge concepts is
impossible due to the conceptual deficiencies outlined above.

5.2. KENT OCL 49

5.2.3 The Definition Level

The Kent OCL Library uses an adapter-based approach for the integration of custom target
languages that is very similar to the concept of model adaptation presented in Section 4.3.3.
Figure 5.13 exemplifies the principle for the EMF adapter realizing the Namespace interface
from the Bridge model. In its lookupOwnedElement method, this adapter simply iterates
through the adapted EPackage and returns a corresponding adapter for the EClassifier
with the requested name. The construction of new adapters is delegated to a central factory.
My own solution essentially follows this pattern, but differs in some implementation aspects (see
Section 6.2.3).

NamespaceImpl
(from bridge4emf)

EPackage
(from ecore)

1_epkg 1

Namespace
(from bridge)

<<interface>>

EmfBridgeFactory
(from bridge4emf)

BridgeFactory
(from bridge)

<<interface>>

<<use>>

Figure 5.13: Model Adaptation in the Kent OCL Library

5.2.4 The Execution Level

The Kent OCL Library provides a straightforward implementation of the OCL Standard Library
in Java. Each predefined OCL type is mapped to a corresponding Java type. Domain-specific
representations of instance-level elements are not supported. The metaprogramming facilities
are very slim. For instance, collection and tuple types cannot be accessed on the Execution
Level and the OclType implementation is a simple wrapper around java.lang.Class.

Both code generation and runtime evaluation via an interpreter relies on a Visitor [GHJV95]
API that is supported by each abstract syntax element. Domain-specific implementations of
the ModelImplementationAdapter interface allow accessing properties and operations of
instance-level elements in a customizable fashion. Listing 5.2 illustrates the principle with an ex-
cerpt from EmfImplementationAdapter. This creative approach simplifies code generation,
but limits the reusability of an interpreter due to strong dependencies on the Java reflection
mechanism.

� �
1 public String getGetterName(String property_name) {
2 return "get" + property_name.substring(0,1).toUpperCase() +
3 property_name.substring(1,property_name.length());
4 }
5

6 public String getEnumLiteralValue(String enum, String enumLit) {
7 return enum + ".get(\"" + enumLit + "\")";
8 }� �

Listing 5.2: Adapting domain-specific execution semantics in Kent OCL

50 5. RELATED WORK

5.3 The Epsilon Platform

5.3.1 Overview

The Epsilon project (Extensible Platform for Specification of Integrated Languages for mOdel
maNagement) [Epsb] was initiated at the University of York within the context of the European
Integrated Project MODELWARE [MODb]. In the meantime, it has been migrated to the
Eclipse GMT project (Generative Modeling Technologies) [GMT], but continues to be developed
in the context of MODELWARE’s successor project, MODELPLEX [MODa].

The scope of Epsilon is much larger than simply providing an OCL engine. Instead, it aims
at “building a framework for supporting the construction of domain-specific languages and tools
for model management tasks, i.e, model merging, model comparison, inter- and intra-model
consistency checking, text generation, etc.” [Epsa]. On top of a model querying language, the
Epsilon platform builds several task-specific languages that share comprehensive Eclipse editing
support [KPP06a]. I have included the project in my review of related work because it claims to
be the first implementation of instance-level alignment of OCL with arbitrary domain-specific
languages [KPP06d].

However, in contrast to the Dresden OCL Toolkit and the Kent OCL Library, Epsilon does
not actually provide an OCL engine at the moment. Instead, it defines an own query language
called Epsilon Object Language (EOL) [KPP06c] that is akin to, but not compatible with OCL.
This has primarily practical reasons and the authors are working on model transformations to
bridge the technological gap [KPP06d]. Thus, it does not pose an impediment for a conceptual
evaluation within the scope of this report.

5.3.2 The Concepts and Definition Level

The Epsilon Platform does not explicitly define a common metamodel for composition with the
metamodels of domain-specific languages. Instead, an abstraction layer called Epsilon Model
Connectivity (EMC) specifies a number of operations which are required for an integration with
the execution engine. Figure 5.14 shows a high-level overview of this architecture.

EMF MDR ...

Epsilon Model Connectivity (EMC)

Epsilon Object Language (EOL)

Epsilon
Transformation
Language (ETL)

Epsilon
Comparison

Language (ECL)

Epsilon Merging Language (EML) Future
Epsilon

Languages
Eclipse-based
Development

Tools

Figure 5.14: Architecture of the Epsilon Platform (adapted from [KPP06a])

5.3. THE EPSILON PLATFORM 51

The operations that need to be supported can be classified in two categories:

• specification of the domain-specific instantiation semantics (e.g., how to find all instances
of a type)

• specification of the domain-specific semantics of the point (.) navigational operator (e.g.,
what does an expression variable.property mean)

All of these operations are declared in the interface EolModel. The implementations of this
interface for EMF (EmfModel) and the Netbeans MDR (MdrModel) are realized in Java. Much
more interesting is a special implementation called EolM0Model that allows for defining the
above-listed semantics using EOL itself. Thus, a high-level declarative language can be used for
defining the integration of an arbitrary DSL with the EOL execution engine.

Although the approach taken in the Epsilon project easily integrates different model reposi-
tory technologies and permits declarative specifications of DSL semantics, some open questions
remain. First and foremost, building the execution engine directly on top of the concrete syn-
tax is disputable. Most researchers and practitioners agree that, ideally, the metamodel of a
language should be the basis for the “automated, tool-supported processing of models” [SV06,
p. 85]. Moreover, reducing the expressiveness to the point operator alone might not suffice to
capture all possible semantics. For instance, it is unclear how the current implementation of the
Epsilon platform supports operation calls, enumeration literal expressions, static features etc.
At least the EMF and MDR bindings seem to be limited to property calls.

Finally, specifiying the integration with another DSL declaratively may not be adequate to
actually execute a query on the System layer. In [KPP06d] the binding with a relational DSL is
presented. Yet, the article does not mention how an actual database can be accessed with the
EOL engine. Obviously, there is a difference between manipulating the instance of a DSL in a
standard model repository like EMF and modifying one that really links to concrete System layer
elements. Section 2.1.3 highlighted that this may require totally different execution semantics.

5.3.3 The Execution Level

Epsilon provides its own implementation of the OCL Standard Library, appropriately prefixing
all elements with Eol (e.g., EolAny, EolCollection, etc.). There are no classes corre-
sponding to OclTuple and OclEnumLiteral, though. Custom adapters for domain-specific
representations of the standard types are not supported. Similar to the Kent OCL Library, all
Standard Library types are simple wrappers for appropriate Java types. However, the meta level
implementation is more extensive than the one in Kent OCL and additionally covers primitive
types, collection types as well as user-defined types. Compared with the Dresden OCL Toolkit,
this still falls short of tuple types and enum types.

Accessing model element properties is facilitated through the interfaces PropertyGetter
and PropertySetter. The EMF and MDR implementations of these interfaces use their
respective reflective capabilities. An additional implementation for Java employs Java reflection
and alternatively tries a number of different method name patterns (see Listing 5.3).

52 5. RELATED WORK

� �
1 String methodName = "get" + property;
2 Method method = ReflectionUtil.getMethodFor(object, methodName, 0);
3

4 if (method == null){
5 methodName = property;
6 method = ReflectionUtil.getMethodFor(object, methodName, 0);
7 }
8

9 if (method == null){
10 methodName = "is" + property;
11 method = ReflectionUtil.getMethodFor(object, methodName, 0);
12 }� �

Listing 5.3: Accessing properties of Java objects in Epsilon

Table 5.1 summarizes the review of related work presented in this chapter. The next chapter
will illustrate how the experiences and conclusions drawn from this analysis have influenced the
design of my own Pivot Model.

Dresden OCL2 Toolkit Kent OCL Library Epsilon Platform
Concepts

Level
CommonModel as abstrac-
tion of MOF 1.4 and UML
1.5 containing some design
flaws

Bridge metamodel provides
central abstraction, far-
reaching adjustments of the
OCL type hierarchy

no dedicated common
metamodel for abstracting
from different DSLs

Definition
Level

inheritance-based, complex
mixture of object and class
adapters, ModelFacade
as central interface to for-
eign model repositories

model adaptation, integra-
tion of foreign repositories
via adapters and Abstract-
Factory pattern

no metamodel-based inte-
gration, model connecti-
vity layer requiring defi-
nition of allInstances
and dot operator semantics

Execution
Level

implementation of the OCL
Standard library optimized
for code generator, con-
version between OCL and
domain-specific representa-
tion cumbersome

strictly Java-based im-
plementation of the OCL
Standard Library, domain-
specific semantics through
string concatenation of
property accessor code

Java-based implementation
of OCL Standard Library
for EOL, domain semantics
limited to property getter
and setter abstraction

Table 5.1: Summary of analysis of related work

53

6 Results

In the previous two chapters, I have thoroughly analyzed the underlying problems arising from an
integration of OCL with multiple metamodels and examined how existing implementations try
to deal with these challenges. By identifying the shortcomings of previous work, I have created
a solid foundation for a holistic approach to fulfilling the goals of this report. This chapter
will comprehensively describe my overall solution in regards to the three-layered conceptual
framework I have been using as a guideline throughout this work. It consists of two main
parts. First, I will cover the design of both the Pivot Model and the metamodel integration
infrastructure developed around it. This section will concentrate on the rationale behind some
of the more intricate design decisions, but leave out implementation-specific details. The actual
prototypical realization of the project is the topic of the second part. Here, I will particularly
highlight some of the slightly more involved patterns and idioms in the implementation code.
The explanations should be sufficient to provide a starting point for future extension of the
components developed so far.

6.1 Realizing the Pivot Concept

6.1.1 The Concepts Level

This section presents a detailed discussion of the design of the Pivot Model. It starts with the
formulation of a number of general design principles which have guided the development process.
They should help to better understand some design decisions. Then, I will highlight each of the
different aspects of the Pivot Model in turn and provide explanations for more controversial
issues when appropriate.

Design Principles

In Section 2.3.5, I explained why Essential OCL is a good foundation for an integration of OCL
with arbitrary domain-specific languages. Consequently, the Pivot Model design is based on the
structure of the Core::Basic package (see Figure 2.13 for a refresher). Starting from there, I have
followed the following principles:

Simplification and consolidation

My main objective was to simplify and consolidate the metamodel of Core::Basic to address the
issues raised in Section 2.3.5 and Chapter 5. This includes, in particular, the problem of the
missing Classifier concept. Additionally, I aimed for removing superfluous classes to flatten the
inheritance tree. Also, I have removed metaclass attributes that are not relevant for evaluating
OCL expressions.

Maximizing expressiveness

Core::Basic lacks some useful language capabilities which severely limits the set of valid OCL
expressions. I have added those concepts that I imagine to occur frequently in domain-specific

54 6. RESULTS

languages. Note that the model adaptation mechanism presented in Section 4.3.3 does not
require a DSL to support all concepts available in the Pivot Model.

Ensuring a layered design

As pointed out earlier, I have striven to avoid any dependencies from the EssentialOCL package
to the Pivot Model. This facilitates a layered design and allows splitting up the implementation
of the model in separate components. Neither the Dresden OCL2 Toolkit nor the Kent OCL
Library currently achieve this level of modularity.

Consistent use of multiple inheritance

Section 5.1.2 highlighted the common phenomenon of overlapping concepts in metamodels and
the inconsistent use of different forms of inheritance in response to this. For instance, from
a conceptual point of view there is no sound reason why TypedElement should descend from
NamedElement, while MultiplicityElement is mixed in separately. The first two concepts are
equally unrelated. As a result of this consideration, the Pivot Model consistently employs
multiple inheritance to include these aspectual features. This yields the additional benefit of a
more shallow inheritance tree. Note that this does not hinder mapping the Pivot Model to an
object-oriented language without support for multiple inheritance. Firstly, code generation with
mixin inheritance can significantly reduce the effort of building an implementation. Secondly,
the class inheritance hierarchy may still be altered during the implementation phase to maximize
code reuse in subclasses.

Keeping compatibility with Dresden OCL Toolkit

The current implementation of the Dresden OCL2 Toolkit defines additional operations on some
CommonModel classes to ease the implementation of the OCL parser, type checker, and compiler.
For instance, Operation adds several methods to retrieve only a subset of the owned parameters.
Whenever the need for these additional operations was justified, I have included them in the
Pivot Model as well.

Adjusting the OCL specification

At the moment, OCL 2.0 [OMG06c] is not yet entirely aligned with the 2.0 versions of UML and
MOF. To a large extent, it is still based on the UML 1.5 standard. This is particularly evident in
the OCL expressions used to define additional operations, wellformedness rules and the abstract
syntax mapping. Time constraints did not allow me to update the complete specification, but
Appendix A precisely defines most of the additional operations in the Pivot Model. Note that
I have omitted apparently deprecated operations such as Operation::allProperties and
Parameter::make [OMG06c, pp. 56].

Consistent naming

The naming of attributes and association ends in the Pivot Model follows the scheme employed
by the UML 2.0 specification.

Pivot Model Design Considerations

Now that I have established some general design guidelines, I can proceed to explain the different
aspects of the Pivot Model design in more detail.

6.1. REALIZING THE PIVOT CONCEPT 55

Overview

Figure 6.1 gives an overview of the main concepts in the Pivot Model and their relationships. The
most obvious difference to the structure of Core::Basic is that any type may possess properties
and operations now. The redundant metaclasses Class and Datatype have been removed. This
design alleviates most of the problems described in Section 2.3.5. In addition, it defines a clean
inheritance hierarchy of the very central object-oriented concepts supported by OCL. This may
serve as a guideline for the initial integration with an arbitrary domain-specific language. All of
the additional metaclasses explained below only provide the means to support some of the more
intricate features of the OCL concrete syntax.

NamedElement

PrimitiveTypeEnumerationEnumerationLiteral
0..1

0..* enumeration

0..1ownedLiteral

0..*
{ordered}

Parameter

Namespace

0..*

0..1

nestedNamespace 0..*

nestingNamespace

0..1

Operation
0..1

0..*operation

0..1 ownedParameter

0..*
{ordered}

Property
Type

0..1

0..*namespace

0..1 ownedType

0..*

0..*

0..1
ownedOperation

0..*

{ordered}

owningType

0..1

0..*

0..1 ownedProperty

0..*

{ordered}

owningType

0..1

Figure 6.1: Main concepts of the Pivot Model

Named Elements

The Pivot Model adds a derived attribute qualifiedName to the abstract metaclass NamedEle-
ment (Figure 6.2). This is motivated by the current implementation of the code generator in the
Dresden OCL2 Toolkit that relies on this attribute. Contrary to the definition in the UML 2.0
package Core::Abstractions:Namespaces, the qualified name is not constructed from a hierarchy
of namespaces. Instead, each NamedElement has an owner. The exact type of the owner is
subclass-specific. For instance, the owner of a Parameter is the corresponding Operation.

NamedElement

name : String
/ qualifiedName : String

0..1/owner 0..1

Figure 6.2: The abstract Pivot Model class NamedElement

Types and Typed Elements

The Type metaclass contains all of the special operations defined in the OCL 2.0 specifica-
tion [OMG06c, p. 55] (Figure 6.3). To support definition constraints (see Section 2.3.4), the

56 6. RESULTS

Pivot Model additionally includes operations that add a new Property or Operation to a Type.
These operations return the corresponding Type instance, so they can be specified as OCL
queries. Elements with a type mix in the corresponding abstract metaclass TypedElement as
described further above.

Property

TypedElement

Type

conformsTo(other : Type) : Boolean
commonSuperType(other : Type) : Type
allProperties() : Set<Property>
allOperations() : Set<Operation>
lookupProperty(name : String) : Property
lookupOperation(name : String, paramTypes : Sequence<Type>) : Operation
addProperty(property : Property) : Type
addOperation(operation : Operation) : Type
addSuperType(type : Type) : Type

0..* 0..10..*

type

0..1

0..*

0..*

0..*

superType

0..*

ParameterOperation

Figure 6.3: Types and typed elements in the Pivot Model

Operations and Parameters

Core::Basic does not support the notion of a parameter direction kind. Since OCL defines
precise semantics for passing in, out, or inout parameters into an Operation, I have included
the corresponding meta elements from the UML Core::Constructs package (Figure 6.4).

ParameterDirectionKind
<<enumeration>>

in
out
inout
return

Parameter

kind : ParameterDirectionKind = in

Operation

0..1 0..*

operation

0..1

ownedParameter

0..*
{ordered}

0..*

/inputParameter

0..*
{subsets ownedParameter}

0..*

/outputParameter

0..*
{subsets ownedParameter}

0..1

/returnParameter

0..1
{subsets ownedParameter}

0..*

/signatureParameter

0..*
{subsets ownedParameter}

Figure 6.4: Operations and parameters in the Pivot Model

Multiplicity Elements

In Core::Basic, a MultiplicityElement has a lower and an upper bound. However, an OCL engine
only needs to distinguish between single- and multivalued elements. The exact bounds are
irrelevant. Following the design of the Dresden OCL2 Toolkit CommonModel, I have replaced
the two attributes with a boolean flag isMultiple (Figure 6.5).

6.1. REALIZING THE PIVOT CONCEPT 57

MultiplicityElement

isOrdered : Boolean = false
isUnique : Boolean = true
isMultiple : Boolean = false

Parameter

kind : ParameterDirectionKind = in

asProperty() : Property

OperationProperty

Figure 6.5: Elements with multiplicity in the Pivot Model

Features

Core::Basic does not know the concept of static properties and operations. Yet, this is a common
feature in object-oriented domains and is explicitly supported by OCL. It is particularly vital
for the predefined allInstances operation. Hence, I have added an abstraction Feature that
provides a corresponding boolean flag (Figure 6.6).

Feature

isStatic : Boolean = false

Property

cmpSlots(p : Property) : Boolean

Operation

hasMatchingSignature(paramTypes : Sequence<Type>) : Boolean
addParameter(param : Parameter) : Operation

Figure 6.6: Supporting static features in the Pivot Model

Primitive Types

Modeling languages usually define a set of primitive types so users do not have to specify their
own. As an example, consider the Core::PrimitiveTypes package in the UML Infrastructure
Library or the predefined datatypes in the EMF Ecore model. Intuitively, the arithmetic and
logical operations defined in the OCL Standard Library should be available on these types
as well. However, this requires a mapping from the domain-specific representation onto the
corresponding OCL type.

To this end, the Dresden OCL2 Toolkit employs an additional operation toOclType that
needs to be realized by all subtypes of Classifier. I have already mentioned this operation (and
the problems associated with it) back in Section 5.1.2. The Kent OCL Library resorts to a simple
instanceof check when creating new adapters for a domain-specific type. Both approaches
introduce a dependency from the domain-specific implementations of the PrimitiveType concept
to the OCL Standard library.

In the Pivot Model, I have realized a slightly different approach. The PrimitiveType metaclass

58 6. RESULTS

defines an additional kind attribute that gives a hint to the OCL engine about the required
type mapping (Figure 6.7). The default value is Unknown, which represents domain-specific
data types that do not have an equivalent OCL type. For instance, EMF allows to define data
types as proxies for Java classes that are not part of the model. In summary, this design not
only eliminates the dependency to the OCL Standard Library, but is also flexible enough to
support query languages other than OCL. If needed, the OclPrimitiveTypeKind enumeration can
be extended accordingly.

PrimitiveType

kind : PrimitiveTypeKind PrimitiveTypeKind

Unknown
Integer
Real
Boolean
String
UnlimitedNatural

<<enumeration>>

Figure 6.7: Type mapping for primitive types in the Pivot Model

Constraint definitions

Core::Basic does not support the notion of constraints. Thus, different forms of constraints
(invariants, pre- or postconditions, etc.) cannot be expressed in the abstract syntax. Moreover,
it is unclear how to add instances of OCL metaclasses to an existing model. In Essential OCL,
the top-level concept ExpressionInOcl solely derives from TypedElement which cannot be added
to a Namespace. In response to this problem, the Pivot Model includes a number of constraint-
related classes (Figure 6.8). The model is inspired by the UML Core::Abstractions::Constraints
package and the Kent OCL Bridge model presented in Section 5.2.2. Note that in contrast to
the Kent OCL solution, the Pivot Model remains entirely independent of the OCL metamodel.

ConstraintKind

invariant
definition
precondition
postcondition
initialvalue
derivedvalue
body

<<enumeration>>

OperationPropertyType

Namespace Expression

body : String
language : String

ConstrainableElement

NamedElement

Constraint

kind : ConstraintKind
0..*

0..1 ownedRule

0..*namespace

0..1

1

0..1
specification

1constraint

0..1

0..*

constrainedElement

0..*
{ordered}

Feature

0..1definedFeature 0..1

Figure 6.8: Constraint definitions in the Pivot Model

The model introduces an abstraction ConstrainableElement that classifies all elements that may
be the target of a constraint expression. Constraints with kind definition may additionally
reference the defined feature. It is worth mentioning that the UML specification denotes the
context where a constraint is evaluated via an additional reference to Namespace. I have omitted

6.1. REALIZING THE PIVOT CONCEPT 59

this association since OCL saves an expression’s context in a dedicated Variable accessible from
ExpressionInOcl.

Generics

The predefined collection types in the OCL Standard Library are actually template types with
the type parameter T [OMG06c, p. 144]. Thus, the concrete collection type Sequence(Integer)
is created from the template Sequence(T) by substituting (or binding) T with Integer.
Existing implementations of OCL usually create the collection types programmatically when
required. The Dresden OCL2 Toolkit and the Kent OCL Library work this way. A significant
drawback of this approach is that the structure of the Standard Library is buried deep inside the
implementation code. Evidently, this severely impairs reusability, flexibility, and maintainability.

In this report, I propose the novel approach of modeling the Standard Library as an instance
of the Pivot Model. Then, it can easily be serialized into an XMI representation and loaded
into the domain-specific model when necessary (see Section 6.2.2). However, to model the
operations defined on the OCL collection types, the Pivot Model needs to support templates.
As an example, consider the sum operation in Collection(T) that returns the sum of all
contained elements (Listing 6.1). Since the return type depends on the element type of the
collection, it must be possible to specify the corresponding type parameter in the model.

� �
1 sum() : T
2 post: result = self->iterate(elem; acc : T = 0 | acc + elem)� �

Listing 6.1: The summation operation defined for Collection(T)

However, allowing type parameters for types alone does not suffice. To see why, consider the
product operation of Collection(T) which returns the cartesian product of two collections
(Listing 6.2). Note that the concrete signature of this operation (in particular, its return type)
not only depends on the binding of the type parameter T, but also on the type of the argument
c2. This is an example for a so-called generic operation [Bra04]. Further note that the return
type of the product operation is itself a template type, namely Tuple(first:F, second:S),
whose type parameters F and S are bound with the type parameters of the collection types, T
and T2, respectively.

� �
1 product(c2:Collection(T2)) : Set(Tuple(first:T, second:T2))
2

3 post: result = self->iterate (
4 e1; acc : Set(Tuple(first:T, second:T2)) = Set{} |
5 c2->iterate (
6 e2; acc2 : Set(Tuple(first:T, second:T2)) = acc |
7 acc2->including (Tuple{first = e1, second = e2})
8)
9)� �

Listing 6.2: The cartesian product operation of Collection(T)

Figure 6.9 shows the model resulting from these considerations. It is based on the generics
support developed for EMF 2.3 [MP07]. The model introduces a new abstraction GenericElement
which classifies elements that may contain TypeParameters. A type parameter of a generic
element may be bound with a concrete type, which means that all occurences of the parameter
in the definition of the generic element are replaced with this type (Figure 6.10).

60 6. RESULTS

NamedElement

GenericElement GenericType

OperationNamespace ParameterGenericType

TypeParameter
0..*

1 ownedTypeParameter

0..*genericElement

1

1 typeParameter1

TypedElement

TypeArgument

ComplexGenericType

0..*

1

typeArgument 0..*

owningGenericType

1
Type

1unboundType 1

Figure 6.9: Generics in the Pivot Model

GenericElement

bindTypeParameter(parameters : Sequence<TypeParameter>, types : Sequence<Type>) : NamedElement

Figure 6.10: Binding the type parameters of generic elements

To actually model properties, operations or parameters with generics, a TypedElement can
now alternatively reference a GenericType (Figure 6.11). Generic types exist in two flavours. A
ParameterGenericType simply references a TypeParameter, as in the case of the return parame-
ter of the sum operation. A ComplexGenericType, on the other hand, references a Type with
unbound type parameters as well as a number of TypeArguments that will replace the type pa-
rameters during binding. In the example of the product operation, the return parameter has a
ComplexGenericType referencing the unbound type Tuple(first:F,second:S) and defining
two type arguments T and T2. This example shows nicely that type arguments, being plain
TypedElements, can have a generic type as well. Through this design, an unlimited nesting of
generic types becomes possible.

GenericType

TypeTypedElement

0..10..1

genericType

0..1

0..* 0..10..*

type

0..1

0..1

Figure 6.11: Generic types in the Pivot Model

It turns out that supporting generic types for typed elements does not suffice yet. Consider
again the OCL collection type Sequence(T). This generic type extends Collection(T).
Intuitively, binding type parameter T of Sequence(T) with a concrete type, say String,
should result in Sequence(String) extending Collection(String). Yet, the design de-
veloped so far does not cover this special case. The key observation here is that the two type
parameters T are not the same. In fact, it is perfectly legal to label the type parameter of the se-

6.1. REALIZING THE PIVOT CONCEPT 61

quence type with S instead of T. Correctly binding both subtype Sequence(S) and supertype
Collection(T) requires S to be a TypeArgument of Collection(T). This intuition leads
to the introduction of a new association between Type and GenericType denoting the generic
supertypes of a type (Figure 6.12). Then, binding a Type will cause all generic supertypes to be
bound as well. If all type parameters of a generic super type are bound (i.e., it is not generic
any more), it will be added to the regular superType reference list.

Type GenericType
0..*0..1

genericSuperType

0..*0..1

Figure 6.12: Generic supertypes in the Pivot Model

Integrating Essential OCL with the Pivot Model

The alignment of the Essential OCL abstract syntax model with the Pivot Model does not pose
any problems. Basically, it involves replacing all references to EMOF with the corresponding
Pivot Model elements. The resulting package diagram is shown in Figure 6.13. Note that for
a complete alignment, the static semantics (i.e., the wellformedness rules), the abstract syntax
mapping as well as the dynamic semantics need to be adapted as well. Within the bounds of
this report, I have not yet achieved this level of completeness, but the necessary adjustments
should be equally straightforward.

PivotModel
(from Logical View)

EssentialOCL
(from Logical View)

Expressions Types

Figure 6.13: The adjusted Essential OCL metamodel depends on the Pivot Model

To a large extent, the Essential OCL metamodel created for this report corresponds to the
one given in the specification [OMG06c, pp. 172]. However, I have amended the abstract syntax
in a few places when either the alignment with the Pivot Model necessitated this or it appeared
to be useful for increasing the expressiveness of the language. In the following, I will present
only these special cases. Appendix B contains the full specification of the adapted metamodel.

To start with, the simplified type hierarchy in the Pivot Model results in a flattened inheritance
tree in the OCL Types package (Figure 6.14). This is a clear improvement over the elaborate
design of the Kent OCL Library that was shown in Figure 5.11.

62 6. RESULTS

VoidType TypeTypeInvalidTypeCollectionType

Type
(from PivotModel)

0..*

0..1

0..*

elementType

0..1

TupleType

OrderedSetType SequenceType BagType SetType

AnyType

Figure 6.14: The Essential OCL Types package aligned with the Pivot Model

Furthermore, I have removed the meta class NavigationCallExp as super class of Property-
CallExp (Figure 6.15). In Complete OCL, a NavigationCallExp refers to association ends and
association classes. Obviously, these UML-specific references are not required for a mapping
to arbitrary domain-specific languages. However, the Essential OCL specification only sup-
presses the property NavigationCallExp::navigationSource stating that it is “not needed in this
context” [OMG06c, p. 171]. Paradoxically, the now useless metaclass itself is left in the model.
Removing it results in a more concise design.

FeatureCallExp

Property
(from PivotModel)

Operation
(from PivotModel)

OperationCallExp
0..*

0..1

referringExp

0..*

referredOperation0..1

PropertyCallExp

0..*

0..1

referringExp 0..*

referredProperty 0..1

OclExpression

0..1

0..*

parentCall 0..1

argument
0..* {ordered}

0..*

0..1

qualifier

{ordered}

parentCall

0..*

0..1

Figure 6.15: Feature call expressions in the aligned Essential OCL

Also shown in Figure 6.15 is another deviation from the specification. I have added the asso-
ciation PropertyCallExp::qualifier from Complete OCL because, in my opinion, qualified property
access is a very useful language concept to support, for instance, properties representing hash-
tables. Since an OCL parser simply stores the qualifiers in the abstract syntax instance of an
OCL expression, a DSL does not even need to contain the UML concept of qualified association
ends. Providing suitable runtime semantics already suffices (see Section 6.1.3 for more details).

Next, I have renamed the meta class TypeExp to TypeLiteralExp and introduced an inheri-
tance relationship to LiteralExp (Figure 6.16). To explain the motivation for this change, I will
briefly discuss the concept of type expressions, which indeed is inadequately defined in the OCL
2.0 specification. To start with, a TypeExp is specified as “an expression used to refer to an

6.1. REALIZING THE PIVOT CONCEPT 63

existing meta type within an expression. It is used in particular to pass the reference of the
meta type when invoking the operations oclIsKindOf, oclIsTypeOf and oclAsType” [OMG06c,
p. 43]. Unfortunately, there is no production rule in the OCL grammar and no abstract syn-
tax mapping for TypeExp. Thus, the representation of type references remains unspecified.
This lack of precision has prompted alternative solutions such as the introduction of a spe-
cial OclOperationWithTypeArgExp in the Dresden OCL2 Toolkit which represents the operations
oclIsKindOf, oclIsTypeOf and oclAsType. This approach has a significant disadvantage,
though. It introduces specifics of the Standard Library (i.e., the names of these operations) into
the definition of the abstract syntax and, consequently, into the grammar used to build the
parser.

Type
(from PivotModel)

TypeLiteralExp
0..*

0..1typeExp

0..* referredType

0..1

LiteralExp

OclExpression

Figure 6.16: Model of the TypeLiteralExp in Essential OCL

My understanding of the type concept in OCL is as follows: Referring to types in OCL
expressions is syntactically the same as referring to enumeration literals, namely, using a path
name literal. Since EnumLiteralExp subclasses LiteralExp, a consistent class hierarchy should
define the same relationship for type expressions. This intuition results in the changes to the
metamodel outlined in figure 6.16. The production rules in the OCL grammar need to be
amended as follows:

OclExpressionCS ::= LiteralExpCS
LiteralExpCS ::= TypeLiteralExpCS
TypeLiteralExpCS ::= pathNameCS
pathNameCS ::= simpleNameCS (’::’ pathNameCS)?

Now, an interesting observation directly following this definition is that a TypeLiteralExp can
appear anywhere in an OCL term. Consequently, instead of

self.property.oclIsTypeOf(MyNamespace::MyType)

one could also write

let myTypeVariable = MyNamespace::MyType in
self.property.oclIsTypeOf(myTypeVariable)

This expression highlights the reflective capabilities of OCL and is comparable to defining
a variable of type java.lang.Class in Java. It appears that the OCL specification has
originally envisaged this usage because it is directly supported by the type system. The vari-
able myTypeVariable in the expression above has the type OclType, which is the singleton
instance of the meta class TypeType [OMG06c, p. 140]. Despite the conceptual clarity, this
arrangement also entirely alleviates the need for the OclOperationWithTypeArgExp added in the

64 6. RESULTS

current Dresden OCL2 Toolkit. Instead, a standard OperationCallExp may represent the pre-
defined type checking operations since it takes any OclExpression as an argument, in particular
also a TypeLiteralExp.

Finally, I have renamed NullLiteralExp to UndefinedLiteralExp (Figure 6.17). Regarding this
metaclass, the OCL specification is particularly ambiguous. In addition to missing grammar
production rules and abstract syntax mapping, there is not even an explanation in the Abstract
Syntax chapter. The most obvious meaning, however, is that this expression refers to the OCL
equivalent of a null value. In OCL, null is defined as the single instance of the Standard
Library type OclVoid which itself is the singleton instance of the meta type VoidType [OMG06c,
p. 138]. Unfortunately, there is no agreement on how this literal looks like. While Section 11.2.3
of the specification simply defines it as ’null’, practically all wellformedness rules use the string
’OclUndefined’ instead. In the authoritative OCL 2.0 book, Warmer and Kleppe employ
’undefined’ when discussing the topic [WK03, p. 163]. I have decided to follow this suggestion
since it agrees best with the naming of the single OclInvalid instance called ’invalid’. As
a result, I have renamed the corresponding literal expression to UndefinedLiteralExp. The OCL
grammar should be extended with

LiteralExpCS ::= UndefinedLiteralExpCS
UndefinedLiteralExpCS ::= ’undefined’

LiteralExp

UndefinedLiteralExp

Figure 6.17: The metaclass UndefinedLiteralExp in Essential OCL

6.1.2 The Definition Level

As outlined in Section 4.3.3, I have chosen model adaptation for composing the metamodel of
OCL with arbitrary domain-specific languages. Figure 6.18 exemplifies the principle for the
Pivot Model Type concept. The actual implementation differs in some minor respects (see
Section 6.2.2), but the core idea of using an Object Adapter [GHJV95] is essentially the same.

The workings of the adapter mechanism should be mostly self-explanatory. A code gene-
ration facility such as EMF automatically creates suitable getter methods for the attributes
and associations of the Pivot Model element Type. All operation calls on the correspond-
ing Type interface are simply forwarded to the adapted concept in the foreign DSL. For in-
stance, a call to getName() will be forwarded to the adapted EClass’s getName method.
Similarly, calling getOwnedProperty() will result in a list of Property adapters for the
EStructuralReferences contained in the adapted EClass.

Obviously, the problem of adapting an arbitrary DSL for usage with OCL reduces to defining a
suitable mapping (as observed in Section 4.1) and implementing the adapters for the correspond-
ing Pivot Model interfaces. Figure 6.19 shows a possible mapping for the Ecore metamodel using
a simplified notation that relates the Pivot Model interfaces to the corresponding concepts in the
target DSL. Remember that this represents an integration in Model Space (see Section 4.2). Of
course, a similar approach is possible for metamodels defined on M2, with execution semantics

6.1. REALIZING THE PIVOT CONCEPT 65

pivotmodel

Adapters

ecore

Type

getOwnedProperty()
getOwnedOperation()
getSuperType()
addProperty()
addOperation()
addSuperTyoe()

<<interface>>

EClassifier
<<interface>>

ENamedElement

getName()

<<interface>>

NamedElement

getName()

<<interface>>

EClass

getEStructuralFeatures()
getEOperations()
getESuperTypes()

<<interface>>

EClassAdapter

1

adaptee

1

Figure 6.18: Adapting an Ecore EClass for the Pivot Model Type concept

EAttribute

EDataType

EEnumLiteral

EEnum

ENamedElement

EStructuralFeatureEClass

EReference

ETypedElementEPackage

EModelElement

EParameter

EClassifier

EOperation

Enumeration

Enumeration
LiteralNamespace

Type

Property

Operation ParameterPrimitiveType

Figure 6.19: The Ecore metamodel adapted to the Pivot Model

66 6. RESULTS

in System Space. Figure 6.20 depicts the mapping of the example language PML required for
evaluating the constraints presented in Section 4.1.

ServiceParameter

Feature

ExtensionPoint

Service

0..*

1

parameters 0..*

service 1

JavaType

1

0..*

type 1

0..*

10..*

returnType

10..*

1

0..*

type1

0..*

Plugin

0..*

0..1

plugins 0..*

feature 0..1

0..*

1 extensionPoints

0..*plugin

1

0..*

1 services

0..*plugin

1

Type Type
Operation

Property

Namespace

Parameter

Figure 6.20: PML adapted to the Pivot Model

So far, I have only described the adaptation of the structure of a foreign DSL. In Section 4.3.3,
I claimed that the model adaptation approach is equally useful for adapting foreign model
repository technologies. This is immediately obvious from the fact that the Pivot Model adapters
may additionally include logic to access custom model repositories. However, in a sound design
the structural adaptation should be kept separate from the repository adaptation. To this
end, different solutions are imaginable. For instance, a common base class for domain-specific
adapters that rely on the same repository technology could provide the necessary abstraction.
Another possibility is to use the Chain of Responsibility pattern [GHJV95] and create an adapter
chain where structural adaptation occurs after repository adaptation. Finally, following the idea
from the Epsilon platform (see Section 5.3.2), a special form of structural adapter may allow
specifying the adaptation logic in a higher-level visual or declarative language. A first step
towards this goal is to annotate the elements of a target DSL to define the mapping to the
concepts of the Pivot Model. A code generator can then use this information to automatically
generate most of the adapter implementation. Section 6.2.2 will provide a brief outline how to
implement this approach in EMF.

Lastly, I would like to draw attention to one more useful property of the model adaptation
mechanism. The key observation is that, in addition to merely adapting the foreign repository,
the adapters provide a way to add transient elements to the model. As an example, consider OCL
expressions that are defined in external files. An OCL parser needs to include the corresponding
Constraint instances in the ownedRule reference list of the Namespace that represents the
package declared for these expressions. Another typical application area are constraints that
define new properties and operations on types. Obviously, these features need to be present in the
model when parsing other expressions referencing them. Yet, in most cases it will be undesirable
to alter the contents of the foreign repository directly. In fact, the semantics for adding new
elements may be entirely undefined or, even worse, unsupported. Strictly-speaking, an OCL
parser should not add new elements to the model at all, because according to Section 2.1.1, the
textual OCL expressions already represent one part of the model. The adapter-based approach

6.1. REALIZING THE PIVOT CONCEPT 67

provides a solution to this seemingly contradictory problem. The OCL abstract syntax instances
created by a parser are simply stored inside the adapters. Then, querying the ownedRule of a
Namespace or the ownedOperation of a Type yields the union of these transient elements
and the adapters created for the objects in the foreign model repository.

6.1.3 The Execution Level

In Section 5.1.4, I highlighted the problems in the Standard Library implementation of the
Dresden OCL2 Toolkit that hinder its integration with arbitrary domain-specific languages and
dynamic execution via an OCL interpreter. Summarized, I had identified the following issues:

1. complex and inconsistent adaptation of domain-specific types to OCL types
2. lacking capability to reflectively call operations on predefined types
3. unnecessary explicit target type specification when retrieving properties
4. missing support for passing OclType objects as parameters to operations

To address the first problem, I propose defining the entire Standard Library as a set of
interfaces rather than the elaborate and hard-to-understand class hierarchy that exists at the
moment. Apart from the fact that this is a fundamental object-oriented design principle, the
use of interfaces allows for arbitrary (hence, domain-specific) implementations of the Standard
Library concepts. Thus, for one DSL an OCL Integer may map to a java.lang.Long, for
another one it might represent an utterly different type.

To convert between the different representations, I suggest an adapter-based approach similar
to the one used on the Definition Level. Quite simply, a top interface OclAdapter with a single
method getAdaptee may provide the necessary abstraction. Through this design, converting
OCL types back to their domain-specific representation (as required when passing parameters to
operations) is localized in the corresponding adapters. Compared with the current approach of
using a central factory class which does all the conversions, my solution provides a significantly
better separation of concerns.

Of course, creating OCL representations for domain-specific types that are returned by pro-
perty or operation calls is not as simple because it requires knowledge about the domain. How-
ever, a practical (and extensible) approach is to manage the corresponding mappings in a central
adapter lookup table. Ideally, this table can be configured via a declarative mechanism. For an
Eclipse integration, an obvious solution would be to define a suitable extension point. Within
Eclipse, an even simpler approach is to use the built-in adapter framework. It allows “trans-
lating one type of object into a corresponding object of another type” [CR06, p. 714] and is
loosely based on the Extension Objects Pattern [Gam96]. The core idea is to query whether an
object realizes the interface IAdaptable. In this case, an adapter for a certain type (i.e., the
OCL type) can be retrieved via the getAdapter method. Otherwise, an IAdapterManager
(configured through an extension point) can be asked to provide the adapter instead.

The second of the identified problems can be easily solved by moving the reflective operations
into the OclRoot interface. To make the semantics of the operations more intuitive, I suggest
renaming them from getFeature to getPropertyValue and invokeOperation. To ad-
dress the third issue, I propose adding operations to retrieve properties as one of the predefined
collection types. As described in Section 5.1.4, this eliminates the need for a dedicated type
parameter. Also, an operation is required that allows passing one or several qualifiers to provide
the runtime semantics for the corresponding abstract syntax elements.

68 6. RESULTS

T

OclCollection
<<interface>>

OclAdapter

getAdaptee() : Object

<<interface>>

OclCollectionType
<<interface>>

OclAny
<<interface>>

OclObject
<<interface>>

OclRoot

getPropertyValue(propertyName : String) : OclRoot
getPropertyValue(propertyName : String, qualifier : OclRoot[]) : OclRoot
getPropertyValueAsSequence(propertyName : String) : OclSequence<OclRoot>
getPropertyValueAsBag(propertyName : String) : OclBag<OclRoot>
getPropertyValueAsSet(propertyName : String) : OclSet<OclRoot>
getPropertyValueAsOrderedSet(propertyName : String) : OclOrderedSet<OclRoot>
invokeOperation(operationName : String, parameters : OclRoot[]) : OclRoot

<<Interface>>

OclVoid
<<interface>>

OclInvalid
<<interface>>

OclType
<<interface>>

OclPrimitiveType
<<interface>>

OclEnumType
<<interface>>

OclTupleType
<<interface>>

subtyped by OclSequence<T>,
OclBag<T>, OclOrderedSet<T>
and OclSet<T>

subtyped by OclBoolean,
OclString, OclReal, OclInteger,
OclTuple and OclEnumLiteral

Figure 6.21: An improved Standard Library design for the Execution Level

6.2. PROTOTYPICAL IMPLEMENTATION 69

Lastly, the solution to the problem of OclTypes as parameters of type-checking operations
(e.g., oclIsKindOf or oclAsType) is to unify the inheritance hierarchy of the Standard
Library by making OclType descend from OclRoot. Through this design, OclType also
reuses the reflective capabilities described above. This is required to call static operations such
as the predefined allInstances operation. Figure 6.21 summarizes all these considerations
in a model of an improved Standard Library design.

So far, I have only described amendments to the current Dresden OCL2 Toolkit Execution
Level design. In addition, I will briefly outline an extension required for an envisaged QVT
engine implementation. In a model transformation scenario, querying property values alone
does not suffice. It must also be possible to set properties or add values to a multi-valued
property. To this end, the QVT specification defines two different concrete syntax forms for an
assignment expression (see Listing 6.3).

� �
1 mysimpleproperty := "hello";
2 mymultivaluedproperty += object Node {...}; // additive semantics
3 mymultivaluedproperty := object Node {...}; // reset list and re-assign� �

Listing 6.3: Property assignment in QVT

To support assignments on the Execution Level, I suggest introducing an additional interface
MutableOclRoot that may be mixed in by adapters of domain-specific elements whose pro-
perties can be changed. Figure 6.22 shows the operations required for supporting the different
assignment semantics.

MutableOclRoot

setPropertyValue(propertyName : String, propertyValue : OclRoot) : void
addPropertyValue(propertyName : String, propertyValue : OclRoot) : void

<<interface>>

Figure 6.22: Supporting property assignments for model transformations in QVT

6.2 Prototypical Implementation

6.2.1 The Concepts Level

Initially, I created the Pivot Model in Rational Rose Modeler [IBM]. An import into the Eclipse
Modeling Framework yielded a corresponding Ecore model. The EMF code generator then
produced Java interfaces and implementation classes from this model. Additionally, I used
the framework to create basic user interface support for displaying instances of the model in a
simple tree viewer. This included a number of ItemProvider classes (responsible for providing
labels, icons and property descriptors for each model element) as well as a set of default icons.
Of course, the generated implementation was only the starting point for extensive adaptation
and extension. For instance, the additional operations defined by the OCL specification and the
logic for determining the value of derived properties had to be implemented by hand. Also, the
visual appearance of Pivot Model elements in the UI required major customizations. For this
purpose, EMF supports merging generated with user-provided code, so manual changes are not
lost upon regeneration.

70 6. RESULTS

In addition to the Pivot Model, I also extended the Essential OCL model provided by the
SmartQVT project [BD07] to integrate it with the Pivot Model and include the enhancements
described in Section 6.1.1. In that section, I showed how a careful design helps avoiding circular
dependencies between the Pivot Model and the Essential OCL metamodel. During implementa-
tion, this facilitated separating the code generated for the two metamodels in different Eclipse
plug-ins thereby improving encapsulation, maintainability and reusability. In the following, I
will highlight a few aspects of the EMF implementation of the Pivot Model and Essential OCL
metamodel that emerged during development.

Resolving multiple inheritance

EMF provides two different ways for specifying how to resolve multiple inheritance in the genera-
ted Java code. One possibility is to use a custom stereotype «extend» to mark the realization rela-
tionship that should be generated using implementation inheritance. Figure 6.23 exemplifies this
approach for the Essential OCL Variable element. For this model, EMF will generate interfaces
for all three metaclasses as well as an abstract class NamedElementImpl (providing the imple-
mentation for getName) which is extended by a concrete class VariableImpl. The getType
operation declared by the TypedElement interface is mixed into VariableImpl as well. The
disadvantage of this mechanism is that nevertheless an abstract class TypedElementImpl is
created although VariableImpl cannot extend it.

NamedElement
(from PivotModel)

TypedElement
(from PivotModel)

Variable

<<extend>>

Figure 6.23: Resolving multiple inheritance in EMF with the «extend» stereotype

As a result, I have employed the second method of resolving multiple inheritance in EMF.
For this approach, some abstract metaclasses have to be explicitly denoted as interfaces using
the «interface» stereotype. Then, EMF does not generate an (abstract) implementation class.
This allows for a much more fine-grained control of the code generation process. As hinted
in Section 6.1.1, I have also slightly altered the inheritance hierarchy to maximally exploit
implementation inheritance. Figure 6.24 illustrates the result for the Pivot Model Operation
element. The adapted design particularly benefits the customization of the ItemProvider
classes mentioned above since they are generated using the same inheritance hierarchy as the
model classes. Thus, the logic for creating labels and updating the UI can be effectively shared.

Hiding EMF dependencies

By default, EMF generates code that has dependencies to the EMF API. For instance, multi-
valued attributes have the type EList and interfaces created from the model elements extend
EObject. Configuring the code generator with the following settings produces a “clean” API
without any visible dependencies to EMF:

• Suppress EMF Metadata: true
• Suppress EMF Model Tags: true
• Root Extends Interface: empty
• Suppress EMF Types: true

6.2. PROTOTYPICAL IMPLEMENTATION 71

NamedElement

TypedElement

Feature

MultiplicityElement
<<interface>>

ConstrainableElement
<<interface>>

Operation

GenericElement
<<interface>>

Figure 6.24: Resolving multiple inheritance in EMF by explicitly denoting interfaces

This represents a major advantage over a JMI-based implementation since clients of the Pivot
Model API now remain totally oblivious of the underlying technology.

Providing missing datatypes

The definition of the Pivot Model employs a number of primitive datatypes (e.g., String and
Boolean) as well as some of the OCL collection types (Sequence, Set). As outlined in Section 2.3.4,
these datatypes are instances of metaclasses on a higher meta layer. Since the Pivot Model in
conjunction with the Essential OCL metamodel forms a reflexive metamodel, the required data
types must be provided by a bootstrapping process. In EMF, this can be achieved through the
definition of EDataTypes that are mapped to suitable Java classes. Figure 6.25 shows how this
is modeled in Ecore. Note that for consistency reasons, I have provided a full set of datatypes
including those that are not actually used in the specification of the Pivot Model. Further note
that the definition of generic datatypes using the «parameter» stereotype is an EMF 2.3 feature
not supported in previous releases.

Sequence
<<datatype>>

<<parameter>> T
<<javaclass>> java.util.List

Set
<<datatype>>

<<parameter>> T
<<javaclass>> java.util.Set

UnlimitedNatural
<<datatype>>

<<javaclass>> java.lang.String

Integer
<<datatype>>

<<javaclass>> int

Boolean
<<datatype>>

<<javaclass>> boolean

String
<<datatype>>

<<javaclass>> java.lang.String

Real
<<datatype>>

<<javaclass>> float

Bag
<<datatype>>

<<parameter>> T
<<javaclass>> java.util.List

OrderedSet
<<datatype>>

<<parameter>> T
<<javaclass>> java.util.List

Collection
<<datatype>>

<<parameter>> T
<<javaclass>> java.util.Collection

Figure 6.25: Ecore model of datatypes used in the definition of the Pivot Model

72 6. RESULTS

Type evaluation of OCL expressions

In OCL, each expression has a well-defined type that is determined based on wellformedness
rules given in the specification. The current Dresden OCL2 Toolkit implementation uses the
Visitor design pattern [GHJV95] to walk the abstract syntax tree and evaluate the type of
each sub-expression. In this project, I have chosen a different approach and implemented the
wellformedness rules directly inside the various OclExpression subclasses by overriding the
getType method inherited from TypedElementImpl. Thus, the type evaluation is deferred
until it is actually required (e.g., during execution via an OCL interpreter or code generator).
This does not only speed up the parsing process, but also allows to parse “incomplete” expres-
sions, which can be a useful feature during iterative development. Furthermore, the necessary
logic is localized in the corresponding expression rather than being cumulated in a single Visitor
class thereby fostering separation of concerns. Obviously, my approach fails to check the va-
lidity of an entire OCL expression immediately after parsing. Yet, this disadvantage can easily
be alleviated by implementing a Visitor that simply tries to retrieve the type of all expression
nodes. Then, it is even possible to “collect“ several error messages on the way and present a
summarizing report to the user rather than canceling the process when encountering the first
problem.

Providing an OCL parser

For testing purposes and to provide a solid foundation for future work, it was necessary to be
able to parse OCL expressions. However, the creation of a real OCL parser or the adaptation
of an existing one are far outside the scope of this project. For this reason, I have devised an
alternative concrete syntax for OCL which builds on XML and, thus, eliminates the need for a
dedicated parser. I have coined the new language XOCL (XML-based OCL). Listing 6.4 shows
one of the two wellformedness rules defined for the example language PML in the introductory
example in Section 4.1. As a quick reminder, the body attribute (line 3) contains the complete
expression as a string comment in OCL syntax.

� �
1 <xocl:NamespaceXS pathName="pml">
2 <ownedRule name="idNotEmpty" kind="invariant" constrainedElement="Plugin">
3 <specification body="self.id->notEmpty()">
4 <bodyExpression xsi:type="xocl:CollectionOperationCallExpXS"
5 referredCollectionOperation="notEmpty">
6 <source xsi:type="xocl:PropertyCallExpXS" referredPropertyName="id">
7 <source xsi:type="xocl:VariableExpXS"
8 referredVariable="//@ownedRule.0/@specification/@context"/>
9 </source>

10 </bodyExpression>
11 </specification>
12 </ownedRule>
13 </xocl:NamespaceXS>� �

Listing 6.4: Excerpt from PML wellformedness rules in XOCL

Note that each expression name in XOCL is postfixed with XS which stands for XML Syntax.
This naming scheme is inspired by the EBNF definition of the OCL concrete syntax which adds
a postfix CS to “clearly distinguish between the concrete syntax elements and their abstract
syntax counterparts” [OMG06c, p. 61].

Most of the XOCL elements have direct correspondents in the abstract syntax. In some
cases, however, I had to introduce additional elements to account for the insufficiencies of the
XML syntax. Consider the expression type CollectionOperationCallExpXS (line 4 in
Listing 6.4) as an example. In the OCL concrete syntax, collection operations are differentiated

6.2. PROTOTYPICAL IMPLEMENTATION 73

from “regular” operation calls by using the ’->’ instead of the ’.’ (dot) operator. This distinction
is not possible in XOCL. Yet, it is strictly required for this particular expression because it
represents the special case of using a single object (the id property) as an implicit collection.
Introducing a dedicated expression type provides the necessary means for the parser to identify
this situation.

Lastly, notice the reference to the context variable (representing the contextual type of
an OCL expression accessible via the self identifier) in line 8 of Listing 6.4. Apparently, the
referenced variable is not part of the XML file. This is because it is deduced from the context dec-
laration (the attribute constrainedElement in line 2). I have implemented a simple parsing
algorithm that automatically creates the necessary variables of an ExpressionInOcl based on the
format of the context declaration. As an example, the string “MyType::op(param:MyType):
MyType” which denotes an operation (e.g. for the definition of pre- or postconditions) will result
in the creation of the variables self, param and result, all of type MyType.

Now, an interesting observation is that the data model of XOCL strongly resembles the
Essential OCL metamodel. In fact, the only major difference is that all references (e.g., types,
properties or operations) are simple strings identifying the referred element via its name or path
name. This gives rise to the idea of modeling XOCL in Ecore by adapting the existing Essential
OCL model and including the few missing elements from the Pivot Model (Namespace and
Constraint). The main benefit of this approach is that the XML serialization and deserialization
of an XOCL expression can be fully delegated to EMF. The task of building an XOCL parser thus
reduces to the implementation of a Visitor that walks the XOCL abstract syntax tree and creates
the corresponding instances of the Essential OCL abstract syntax on the way. Appendix C
contains the complete specification of XOCL as a set of UML diagrams.

Figure 6.26: Visually creating XOCL expressions in an editor

Finally, using EMF yields the added benefit of an automatically generated editor, so an
XOCL expression can be assembled visually. Figure 6.26 illustrates how the XOCL editor
displays the example expression from Listing 6.4. Note that I have considerably adapted the
visual representation of XOCL elements in this editor, so that the rendering resembles the OCL
concrete syntax. The parser itself is realized as an implementation of the IOclParser interface
(Figure 6.27). This abstraction allows reusing other UI components developed for this project
(e.g., a wizard for importing OCL expressions) for a future implementation of a “real” OCL
parser.

Designing an integration framework

All components developed in the course of this project are integrated into a simple MDSD and
OCL infrastructure which I have coined Model Bus. The design has been inspired by ideas
presented in [Wen06b] but additionally reflects the conceptual framework used as a guideline
throughout this report. Consequently, I will present the top-most layer of the integration archi-
tecture here and defer the discussion of the remaining parts to the following sections. Following

74 6. RESULTS

IOclParser

parse(url : URL) : void
dispose() : void

<<interface>>

XOCLParser

Figure 6.27: The IOclParser interface realized by the XOCL parser

the general principle of the entire project, the functionality of the Model Bus is captured in a
set of interfaces to promote flexibility and guarantee loose coupling of components. Abstract
default implementations for many of these interfaces exist, but for the purpose of brevity, I will
omit them in the relevant diagrams.

On the Concepts Level, the Model Bus defines an abstraction IMetamodel representing
the metamodels of domain-specific languages that are to be integrated with OCL. The main
task of an IMetamodel implementation is to grant access to an IModelProvider which in
turn allows to generically load instances of the DSL in the form of an IModel. Finally, an
IMetamodelRegistry manages all registered IMetamodel instances. The design is summa-
rized in Figure 6.28.

IMetamodelRegistry

getMetamodel(id : String) : IMetamodel
getMetamodels() : IMetamodel[]
addMetamodel(metamodel : IMetamodel) : void
dispose() : void

<<interface>>

IMetamodel

getId() : String
getName() : String
getModelProvider() : IModelProvider

<<interface>>
IModelProvider

getModel(modelName : String) : IModel
getModel(modelFile : File) : IModel
getModel(modelUrl : URL) : IModel

<<interface>>

<<create>>

Figure 6.28: The Model Bus infrastructure on the Concepts Level

6.2. PROTOTYPICAL IMPLEMENTATION 75

For an integration within Eclipse, I have implemented both the IMetamodelRegistry
and the IMetamodel interface based on a custom extension point. This permits configuring
new DSLs declaratively without the need for any further coding (Figure 6.29). In addition, I
have developed an IModelProvider implementation that is capable of loading Ecore models
serialized to XMI.

Figure 6.29: Declaratively specifying the integration of a new DSL

6.2.2 The Definition Level

Implementing model adaptation

The implementation of the Definition Level follows the general adapter concept explained in
Section 6.1.2. However, to provide a framework for easily creating a new adapter layer for a
particular DSL, the actual code is a bit more intricate. Figure 6.30 exemplifies the design once
again for the adaptation of the Ecore EClass element. For brevity reasons, not all attributes
and operations are shown.

As can be seen, the Pivot Model Type concept is implemented by a corresponding TypeImpl
class which is also created by the EMF code generator. The important point to notice is that
for each operation from the Type interface, I have added a protected operation with the same
name, but postfixed with Gen. This causes the EMF code generator to forward the code for these
methods to their Gen counterpart. Listing 6.5 contains an excerpt illustrating the mechanism.

� �
1 /**
2 * @generated NOT
3 */
4 public List<Property> getOwnedProperty() {
5 return getOwnedPropertyGen();
6 }
7
8 /**
9 * @generated

10 */
11 protected final List<Property> getOwnedPropertyGen() {
12 if (ownedProperty == null) {
13 ownedProperty = new EObjectContainmentWithInverseEList<Property>(
14 Property.class,this,PivotModelPackageImpl.TYPE__OWNED_PROPERTY,
15 PivotModelPackageImpl.PROPERTY__OWNING_TYPE);
16 }
17 return ownedProperty;
18 }� �

Listing 6.5: Forwarding the code generated by EMF to another method

76 6. RESULTS

AbstractType

+ getName()
+ getNamespace()
+ getOwnedProperty()
getOwnedPropertyImpl()
+ getOwnedOperation()
getOwnedOperationImpl()
+ getSuperType()
getSuperTypeImpl()

(from pivotmodel.base)

TypeImpl

- ownedProperty
- ownedOperation
- superType

+ getOwnedProperty()
getOwnedPropertyGen()
+ getOwnedOperation()
getOwnedOperationGen()
+ getSuperType()
getSuperTypeGen()

(from pivotmodel.impl)

EClass

getEStructuralFeatures()
getEOperations()
getESuperTypes()

(from ecore)

EcoreType
(from metamodels.ecore.internal.model)

1

eClass

1

EcoreAdapterFactory

- adapters : Map

+ createNamespace(EPackage)
+ createType(EClass)
+ createProperty(EStructuralFeature)
+ createOperation(EOperation)
...

(from metamodels.ecore.internal.model)

<<use>>

Type
(from pivotmodel)

<<interface>>

Figure 6.30: Implementing the Model Adaptation approach

Now, to understand the motivation behind this seemingly meaningless idiom, recall that the
adapters are supposed to store transient elements added to the model. Rather than implementing
this mechanism entirely by hand, I have aimed for reusing as much of the EMF implementation as
possible. Listing 6.6 shows how the Gen methods are used when additional (transient) elements
are added to the model.

� �
1 public Type addProperty(Property property) {
2 getOwnedPropertyGen().add(property);
3 }� �

Listing 6.6: Adding transient elements to a model

Through this design, domain-specific adapter subclasses may override the operations declared
in the Type interface (e.g., getOwnedProperty) without losing the implementation created by
EMF. This also constitutes a prerequisite for reusing the EMF UI support since it depends on the
reflective capabilities additionally generated into the Impl classes. Obviously, it is also possible
to implement the Pivot Model interfaces from scratch and provide a custom user interface if
the dependency to EMF poses a problem. As long as the Pivot Model semantics are realized
properly, clients of the interface will remain unaffected.

Returning back to Figure 6.30, the AbstractType class still demands an explanation. There
is one such abstract base class for each concept in the Pivot Model. This serves two purposes.
Firstly, all operations that have to be re-implemented by domain-specific adapter subclasses
are overridden and made abstract. Secondly, the last missing piece to support transient model
elements is provided. Listing 6.7 shows how an application of the Template Method design
pattern [GHJV95] ensures the union of transient elements and domain-specific adapters for the
ownedProperty association.

6.2. PROTOTYPICAL IMPLEMENTATION 77

� �
1 @Override
2 public final List<Property> getOwnedProperty() {
3 List<Property> ownedProperty = new ArrayList<Property>();
4 ownedProperty.addAll(getOwnedPropertyGen());
5 ownedProperty.addAll(getOwnedPropertyImpl());
6 return ownedProperty;
7 }
8

9 protected abstract List<Property> getOwnedPropertyImpl();� �
Listing 6.7: Combining transient elements and model adapters

Finally, it is up to the domain-specific adapters to actually implement the concrete model
adaptation logic. For this project, I have realized a complete adapter layer for the Ecore meta-
model. The creation of new adapters is here delegated to a factory (EcoreAdapterFactory)
that caches previously created adapters (Listing 6.8).

� �
1 @Override
2 protected List<Property> getOwnedPropertyImpl() {
3 List<Property> ownedProperty = new ArrayList<Property>();
4

5 for (EStructuralFeature sf : eClass.getEStructuralFeatures()) {
6 ownedProperty.add(EcoreAdapterFactory.INSTANCE.createProperty(sf));
7 }
8

9 return ownedProperty;
10 }� �

Listing 6.8: Implementing the adapter to the Ecore model

Figure 6.31: The PML metamodel in the Model Browser

Once the adapters for a target DSL have been written, instances of that DSL (i.e., models)
can be accessed via the Pivot Model interfaces. In particular, they can be visualized using a
single user interface. Figures 6.31 and 6.32 show the metamodels of PML and the Pivot Model
itself in the DSL-agnostic model browser developed in the course of this project. Notice how
the Properties View displays the property values of the corresponding Pivot Model metaclasses.
For instance, the value of the property ’isMultiple’ is determined based on the upper bound
of the adapted ETypedElement.

78 6. RESULTS

Figure 6.32: The metamodel of the Pivot Model adapted by itself

Automatically generating the adapters for a target DSL

The manual implementation of the adapter layer for the Ecore metamodel revealed that the
actual adaptation logic represents only a small fraction of the code. This gives rise to the idea of
generating most of the surrounding boilerplate code automatically. As outlined in Section 6.1.2,
this basically requires a mechanism to declaratively specify the mapping of Pivot Model concepts
to the corresponding elements in the target DSL. Following is a brief description of how to realize
this in the Eclipse Modeling Framework. Unfortunately, limited time did not allow me to actually
implement the approach.

The core idea is to annotate the model of the target DSL and use this information to generate
appropriate adapter skeletons. Figure 6.33 illustrates a suitable annotation of the Ecore EClass
element. To adapt the EMF code generator, a custom GeneratorAdapterFactory is re-
gistered in an extension of the org.eclipse.emf.codegen.ecore.generatorAdapters
extension point. This factory in turn creates the GeneratorAdapter instances that perform
the actual code generation. EMF provides its own template engine called JET (Java Emitter
Templates) which allows to create arbitrary textual content in a syntax resembling that of Java
Server Pages (JSP). A JET template is parameterized with elements of a generator model that
wrap the objects from the target DSL. Thus, the template may easily access the annotations
and generate the corresponding adapter code.

Figure 6.33: Annotating a target DSL to define the Pivot Model mapping

6.2. PROTOTYPICAL IMPLEMENTATION 79

The following items need to be generated for a target DSL:

• an adapter for each annotated element
• an adapter factory class containing a create method for each Pivot Model concept that

has an annotated equivalent in the target DSL

Integrating the model of the OCL Standard Library

A particularly challenging task in the development of an OCL engine is the integration of the
OCL Standard Library on the Definition Level. An OCL parser should be able to find the
following elements when building the abstract syntax tree:

• operations defined for OclAny, the implicit super type of all model types
• the predefined OCL primitive types and their operations
• any of the other predefined types (OclVoid, OclInvalid, OclType)
• user-defined collection and tuple types

Existing implementations, such as the Dresden OCL2 Toolkit and the Kent OCL Library,
usually create the model of the OCL Standard Library programmatically. This stems from
the fact that there is an infinite number of tuple and collection types which have to be dy-
namically created when parsing an expression. Moreover, some of the predefined operations in
the Library have return types that depend on the object they are invoked on. Examples are
OclAny::asSet (returning a singleton set containing the object) and OclAny::allInstances
(returning the set of all instances of a type). Both operations have Set(T) as their return type,
but the concrete binding for T cannot be determined until the source type of the operation call
is known.

VoidType

PrimitiveType

InvalidType

TypeType

AnyType

CollectionType

SequenceType

BagType SetType

OrderedSetType

OclLibrary

makeTupleType(atts : Sequence<Property>) : TupleType
getCollectionType(elementType : Type) : CollectionType
getSequenceType(elementType : Type) : SequenceType
getBagType(elementType : Type) : BagType
getSetType(elementType : Type) : SetType
getOrderedSetType(elementType : Type) : OrderedSetType

1

oclVoid

1

1

oclBoolean

1

1

oclString

1

1

oclInteger

1

1

oclReal

1

1

oclInvalid

1

1

oclType

1

1

oclAny

1

1

1

1 1

1
TupleType

0..*

oclSequence

oclCollection oclBag

oclOrderedSet

oclSet

oclTuple

1

1

1

1

1

0..*

Figure 6.34: The OclLibrary facade class providing access to the model of the Standard Library

In this work, I propose the novel approach of modeling the OCL Standard Library externally
as an instance of the Pivot Model. This has a number of significant advantages. In particular,
the structure of the Library can easily be validated, altered, extended and modularized because

80 6. RESULTS

it is no longer hidden inside the code. Moreover, the complexity of the code reduces which
benefits testability and maintainability. In Section 6.1.1, I have already described in detail
how the Generics support in the Pivot Model provides the necessary conceptual foundations.
Therefore, I will limit the discussion here to a number of implementation-related issues.

An important question is how the model of the Standard Library can be accessed after it
has been loaded from its XMI serialization. This is mainly required when determining the
type of an OCL expression since the result may be one of the OCL predefined types. Recall
from the previous section that type evaluation is performed directly in the expression classes
by suitably overriding the getType method. To provide a single point of entry for retrieving
the Standard Library types, I have defined a facade class OclLibrary that offers the required
functionality (Figure 6.34). A similar pattern is employed by the current Dresden OCL2 Toolkit.
In contrast to the Toolkit implementation, however, I have not realized the OclLibrary facade as a
Singleton. Instead, it is modeled as an element of the Essential OCL Types package resulting in a
corresponding interface OclLibrary and implementation class OclLibraryImpl generated
by EMF. This further ensures a purely interface-based API without explicit dependencies to
implementation classes. To allow access to the OclLibrary, the design introduces an association
from the OclExpression meta class (Figure 6.35). Following the Dependency Injection design
pattern [Fow04], this reference needs to be initialized when building the abstract syntax tree of
an OCL expression. Further below is a more detailed description how this is facilitated.

OclExpression
(from Expressions)

OclLibrary
(from Types)

0..10..* 0..1

oclLibrary

0..*

Figure 6.35: Each OCL expression holds a reference to the OCL Library

Now that each expression class has convenient access to the Standard Library, realizing the
type evaluation logic is straightforward. Listing 6.9 exemplifies the principle by showing the
getType implementation inside PropertyCallExpImpl.

� �
1 @Override
2 public Type getType() {
3 if (referredProperty == null) {
4 throw new WellformednessException(...);
5 }
6 return getOclType(referredProperty.getType());
7 }� �

Listing 6.9: Type evaluation for property call expressions

Notice the call to getOclType in line 6. This method is implemented in the super class
OclExpressionImpl (see Listing 6.10) and serves two purposes. Firstly, it maps primitive
model types based on their PrimitiveTypeKind (see Section 6.1.1) to the corresponding OCL
type from the Standard Library. Secondly, it ensures that all types except the OCL collection
types descend from OclAny thereby inheriting all of its predefined operations. Once again,
I follow an “on demand” pattern here, rather than establishing the inheritance relationship
with OclAny for all model elements immediately after parsing (as implemented in the current
Toolkit). This should yield significant performance gains for larger models.

6.2. PROTOTYPICAL IMPLEMENTATION 81

� �
1 protected Type getOclType(Type type) {
2 if (oclLibrary == null) {
3 throw new IllegalStateException(...);
4 }
5

6 if (type instanceof PrimitiveType) {
7 type = mapPrimitiveType((PrimitiveType) type);
8 }
9 else if (!(type instanceof CollectionType)) {

10 type = ensureDescendanceFromOclAny(type);
11 }
12

13 return type;
14 }� �

Listing 6.10: Ensuring OCL semantics for model types

A final question that arises from the remarks above is how to integrate the predefined types
OclVoid and OclInvalid with types from the model. The OCL Specification states that
both conform to all other types [OMG06c, p. 138]. As an answer, the current Dresden OCL2
Toolkit implementation introduces inheritance relationships to all model types which do not
have subtypes. When adapting foreign model repositories via the ModelFacade mechanism
(see Section 5.1.3), these relationships are dynamically created each time when the parents
of the OclVoid type are requested (the Toolkit does not implement the OclInvalid type).
For large models, this represents a tremendous performance bottleneck since finding all types
without subtypes might be non-trivial and expensive. In the Pivot Model implementation, I have
opted for another solution (Listing 6.11). By simply overriding conformance-related methods in
VoidTypeImpl and InvalidTypeImpl, respectively, the correct semantics can be provided
without introducing elaborate inheritance relationships.

� �
1 @Override
2 public boolean conformsTo(Type other) {
3 return true;
4 }
5

6 @Override
7 public Type commonSuperType(Type other) {
8 return other;
9 }� �
Listing 6.11: Ensuring type conformance of OclVoid and OclInvalid with types from the model

Based on the design illustrated above, it is now very easy to create the model of the OCL
Standard Library. Figure 6.36 shows an excerpt as displayed in the (heavily customized) Pivot
Model editor generated by EMF. Notice how Tuple(T, T2) is defined as the type argument
for the generic return type of the Collection::product operation. The root of the model
is the OclLibrary facade element. Once all of its reference slots have been filled, the model
of the Standard Library is complete and guaranteed to work within the OCL engine.

82 6. RESULTS

Figure 6.36: Modeling the OCL Standard Library

6.2. PROTOTYPICAL IMPLEMENTATION 83

Extending the integration architecture

On the Definition Level, four interfaces are added to the Model Bus architecture introduced in the
previous section (see Figure 6.37). Among the noteworthy features are the two IModel opera-
tions findType and findNamespace that are declared in the OCL 2.0 Specification [OMG06c,
p. 167]. Placing these operations in a designated model abstraction is an advancement over the
current Dresden OCL2 Toolkit where they are erroneously located in the Package metaclass.

IModel

getDisplayName() : String
getMetamodel() : IMetamodel
getRootNamespace() : Namespace
findType(pathName : List<String>) : Type
findNamespace(pathName : List<String>) : Namespace
getFactory() : IModelFactory
getOclLibraryProvider() : IOclLibraryProvider
getModelInstanceProvider() : IModelInstanceProvider

<<interface>>
IOclLibraryProvider

getOclLibrary() : OclLibrary

<<interface>>

IModelInstanceProvider

getModelInstance(instanceName : String) : IModelInstance
getModelInstance(instanceFile : File) : IModelInstance
getModelInstance(instanceUrl : URL) : IModelInstance

<<interface>>

IModelFactory

createConstraint(name : String, kind : ConstraintKind, specification : Expression, constrainedElement : ConstrainableElement[]) : Constraint
createExpressionInOcl(body : String, bodyExpression : OclExpression, context : Variable, result : Variable, parameter : Variable[]) : ExpressionInOcl
createVariable(name : String, typePathName : List<String>, initExpression : OclExpression) : Variable
createPropertyCallExp(source : OclExpression, referredPropertyPathName : String, qualifier : OclExpression[]) : PropertyCallExp
createBooleanLiteralExp(booleanLiteral : boolean) : BooleanLiteralExp
...

<<interface>>

<<create>>

<<create>>

<<create>>

Figure 6.37: The Model Bus infrastructure on the Definition Level

Next, the IModelFactory interface represents the central link between an OCL parser and
the adapted model. The AbstractFactory design pattern [GHJV95] used here allows to gene-
rically build the abstract syntax tree for an OCL expression. Notice that a parser can simply
pass in strings to denote model elements (e.g., the referred property of a PropertyCallExp
or the type of a Variable) rather than browsing the model itself. A complete implementation
of IModelFactory is available in the Model Bus Eclipse plug-in. It not only ensures input
validation and error handling, but also properly initializes the reference to the OclLibrary
facade for newly created OCL expressions. To this end, it retrieves the OclLibrary from
an IOclLibraryProvider which in turn is obtained from the associated IModel. The de-
fault implementation of IOclLibraryProvider simply loads the model of the Standard Li-
brary from its XMI serialization located in a sub-folder of the Model Bus plug-in. Lastly, the
IModelInstanceProvider interface provides the connection to the Execution Level.

6.2.3 The Execution Level

As pointed out earlier, the Execution Level is actually outside the scope of this report and has
only been included for conceptual completeness. Consequently, within this project I merely pro-
vide a corresponding Eclipse plug-in and the interfaces of the improved OCL Standard Library
design as suggested in Section 6.1.3. Additionally, the Model Bus architecture described in the
previous sections is completed with the elements required for evaluating OCL expressions via
an interpreter or code generator (Figure 6.38).

84 6. RESULTS

IModelInstanceFactory

createOclBoolean(booleanLiteral : boolean) : OclBoolean
createOclInteger(integerLiteral : int) : OclInteger
createOclReal(realLiteral : float) : OclReal
createOclString(stringLiteral : String) : OclString
createOclTuple(partNames : String[], partValues : OclRoot[]) : OclTuple
<T < OclRoot> createOclSequence(parts : T[]) : OclSequence<T>
<T < OclRoot> createOclBag(parts : T[]) : OclBag<T>
<T < OclRoot> createOclSet(parts : T[]) : OclSet<T>
<T < OclRoot> createOclOrderedSet(parts : T[]) : OclOrderedSet<T>

<<interface>>

IModelInstance

getFactory() : IModelInstanceFactory
findType(pathName : List<String>) : OclType
findEnumType(pathName : List<String>) : OclEnumType
getPrimitiveType(name : String) : OclPrimitiveType
getAnyType() : OclType
getVoidType() : OclType
getInvalidType() : OclType
getTypeType() : OclType
getTupleType(partNames : String[], partTypes : OclType[]) : OclTupleType
getCollectionType(kind : OclCollectionTypeKind, elementType : OclType) : OclCollectionType
getUndefined() : OclVoid
getInvalid() : OclInvalid

<<Interface>>

OclCollectionTypeKind

COLLECTION
SEQUENCE
BAG
SET
ORDEREDSET

<<enumeration>>

OclPrimitiveTypes

BOOLEAN : String = "OclBoolean"
STRING : String = "OclString"
INTEGER : String = "OclInteger"
REAL : String = "OclReal"

<<create>>

Figure 6.38: The Model Bus infrastructure on the Execution Level

At the core of the design is the IModelInstance interface that enables access to the
meta level of a domain-specific execution environment. Thus, it allows to find the type re-
ferenced by a TypeLiteralExp contained in the abstract syntax tree of an OCL expres-
sion. The operations getUndefined and getInvalid return the domain-specific represen-
tations of the single instances of OclVoid and OclInvalid, respectively. Conversely, an
IModelInstanceFactory allows creating new adapters for domain-specific primitive types,
collection types, and tuple types to accommodate the corresponding variants of LiteralExp.
Finally, two additional mixin interfaces provide the foundations for a future development of
a QVT engine (Figure 6.39). In analogy to the design presented in Section 6.1.3, the prefix
Mutable symbolizes the additional capability of creating instances of arbitrary model elements
in the target model during a model transformation.

IMutableModelInstance

getFactory() : IMutableModelInstanceFactory

<<interface>>
IMutableModelInstanceFactory

createOclObject(type : OclType) : OclObject

<<interface>>

IModelInstanceFactory
<<interface>>

IModelInstance
<<Interface>> <<create>>

<<create>>

Figure 6.39: An extension of the Model Bus infrastructure to support a QVT engine

The IModelInstance interface provides the solution to the last open question from Sec-
tion 5.1.4. Recall that a fundamental drawback of the current Dresden OCL2 Toolkit implemen-

6.2. PROTOTYPICAL IMPLEMENTATION 85

tation is the explicit dependency of generated code on a particular model repository technol-
ogy. In the interface-based Model Bus architecture, these implementation details are abstracted
away which greatly enhances reusability and also paves the way for runtime evaluation via an
interpreter. Finally, the IMutableModelInstanceFactory interface provides the necessary
means to address the system instantiation problem identified in Section 2.1.3. By hiding the
necessary semantics in a domain-specific implementation of the Execution Level, a model trans-
formation engine can generically instantiate system-level elements and initialize their properties.
As outlined in Section 2.2.2, this opens up the possibility for metamodel-based data conversion
using a standardized transformation language like QVT.

86 6. RESULTS

87

7 Discussion

In this chapter, I will review the results achieved during this project and assess their benefits
and possible shortcomings. Then, I will clearly highlight the contributions made by this work
to prove its significance. Finally, I will conclude the report and give some directions for further
research.

7.1 Evaluation

Unsurprisingly, implementing the Pivot Model adapters for Ecore did not pose any problems,
given the relative similarity of its metamodel. Thus, this section is not going to discuss the
“completeness” of the Pivot Model, but rather elaborate on how well the infrastructure developed
around it supports the integration of a new target language. In other words, I am not evaluating
the effectivity but the efficiency of the solution presented in this report. Further research is
needed to investigate how well the Pivot Model abstraction supports a breadth of different
DSLs and to what extent OCL lends itself to being used as a constraint and query mechanism
for these languages.

In terms of actual coding volume, the Ecore integration required little work. Even without
the code generation support described in Section 6.2.2, tedious and repetitive programming was
reduced to a minimum through the code assistance in the Eclipse IDE. For instance, skeletons
for the abstract methods in the adapter base classes were filled in automatically. Table 7.1 com-
pares the lines of code required for adapting the metamodels of a number of target languages
in the Dresden OCL2 Toolkit1, the Kent OCL Library and the Pivot Model architecture. Ad-
mittedly, this represents a rather imprecise measure for comparison, but the numbers still give
an indication for assessing the benefit yielded by the results of this work. Adding the suggested
code generation facilities will further reduce the effort for integrating OCL with domain-specific
languages. It should be noted, though, that the current Ecore adapter layer represents the
absolute minimum required for a fully functional integration. To improve performance, further
methods of the default implementation may be overridden. Prime candidates are the various
lookup operations that often have equivalent counterparts in the Ecore model classes.

Dresden OCL2 Toolkit Kent OCL Pivot Model
Adapted metamodel UML MOF Ecore Ecore
Lines of Code 2124 1657 685 554

Table 7.1: Comparison of effort required for adapting a DSL

As described in Section 6.2.2, the generic capabilities of the Pivot Model allowed for a novel
approach to integrate the OCL Standard Library. After the necessary tool support had been
developed, creating the model of the Library proved to be intuitive and simple. To the best of
my knowledge, there is no published work that can match the flexibility and extensibility of my
solution. Of course, its main advantages will only really pay off in the light of future extension

1 not including code required for a custom ModelFacade to adapt foreign model repositories

88 7. DISCUSSION

or modularization of the OCL Standard Library. As of now, the main contribution of my work
is to reduce the inherent complexity of the OCL implementation code. In the past, this has
been a major impediment to the productivity of thesis students when doing research around the
Dresden OCL2 Toolkit.

As a side note, the comprehensive UI support developed for this project also greatly assisted
the implementation of the Ecore adapters. By simply browsing through test models visually,
the correctness of the code could easily be validated without the need for elaborate test cases.
Certainly, dedicated tests must not be omitted in a professional setting, but for prototypical
explorations and “proof-of-concept” studies they are usually dispensable. Development scenarios
employing agile methodologies to investigate a great variety of domain-specific languages before
committing to a fixed modeling toolset may particularly benefit from this approach.

7.2 Limitations

Due to the prototypical nature of the implementation, some limitations exist. For instance, the
XOCL parser does not yet fully parse the context declaration for constraints over operations
and properties. So far, only the required variables (self, result and parameter variables)
are created, but the code for locating the constrained elements in the model is still missing.
This can easily be added but since the XOCL parser is destined to be replaced soon anyways,
it might not become a necessity.

Also, there still remains an unaddressed problem regarding the type evaluation for operation
call expressions. Recall from Section 6.1.1 that generic operations may not have a valid type until
their type parameters are bound. The concrete types to be used for the binding depend (1) on
the arguments of the operation (as in Collection::product or OclAny::oclAsType) or
(2) the source type of the operation call (as in OclAny::asSet or OclAny::allInstances).
Currently, OperationCallExp::getType simply treats these cases explicitly by branching
on the name of the referred operation. The implementation therefore “knows” how to determine
the correct binding for a particular operation in the OCL Standard Library. This dedicated
handling of predefined operations is similar to the existing implementation in the Dresden OCL2
Toolkit, yielding the same significant conceptual flaw of introducing details of the Standard
Library (M1) into the implementation of the OCL abstract syntax elements (M2).

An obvious solution applicable to scenario (1), where the binding depends on the actual
arguments passed to a generic operation, is to imitate the behavior of the Java 5 compiler. That
requires determining which types are bound to those slots where the operation signature defines
its generic type parameters. Due to infinite nesting of generic types, however, an implementation
of this approach may be nontrivial and, thus, has not been realized within the time frame
available for this report. Also, I have not yet found a satisfactory solution for scenario (2), so
further efforts are required to achieve a truly clean design where no dependencies to the Standard
Library remain on meta layer M2.

Lastly, I want to highlight that a limitation “by design” is the lacking support for UML
behavioral concepts such as states, signals and actions. Obviously, these UML-specific meta ele-
ments would severely hamper the domain independence of the Pivot Model. However, validating
UML state machines or other behavioral models now requires an explicit mapping of the Pivot
Model concepts to the corresponding UML meta classes. Further research should evaluate the
appropriateness of the Pivot Model abstraction for this purpose.

7.3. CONTRIBUTIONS OF THIS WORK 89

7.3 Contributions of this Work

In this report, I have thoroughly analyzed existing ideas that have been proposed to integrate
OCL with different metamodels. Based on these considerations, I have developed a new design
for a DSL-agnostic OCL engine. The work was done against the background of ongoing extension
and evolution of the Dresden OCL2 Toolkit, but the results and insights gained may be beneficial
within a broader scope as well. This section will briefly list the main contributions of this project,
both in regard to continuing research at Dresden Unversity of Technology and the advancement
of model-driven approaches in general. In the following two sections, I will provide a more
detailed summary of the report and give directions for future work.

To sum up, in this work I have:

• provided a detailed analysis of inherent conceptual challenges arising from model-driven
development scenarios involving (several) domain-specific modeling languages

• suggested a three-layered conceptual framework to ease the classification and evaluation
of approaches to integrating OCL with different metamodels

• coherently described and evaluated key design concepts of the current Dresden OCL2
Toolkit which had previously been largely undocumented; this should assist future thesis
students in familiarizing themselves with the complex implementation more quickly

• presented a pivotal metamodel for the adaptation of arbitrary DSLs that has been carefully
designed for maximum expressive power of OCL queries defined over its instances

• proposed a novel approach to integrating the OCL Standard Library by introducing temp-
late types and operations on the model level

• realized a clean and purely interface-based integration architecture that may serve as a
foundation for future developments

7.4 Summary and Conclusions

The aim of this report was to design a pivotal metamodel in order to allow OCL queries to
be evaluated over instances of arbitrary domain-specific languages. In addition, a flexible and
extensible mechanism was required to define the corresponding mapping. In conclusion, I have
achieved these goals to a large extent. The design of the Pivot Model presented in this report
clearly surpasses previous solutions in terms of conceptual clarity and expressiveness. The model
adaptation mechanism, which facilitates the composition of an arbitrary DSL with the Pivot
Model, has proved to be effective and efficient, although the prototypical implementation is still
lacking the recommended code generation features. A thorough review of the literature and
a careful analysis of previous approaches support the arguments made in this report. In this
section, I will briefly summarize the most important aspects of this work and draw some final
conclusions.

In the beginning, I singled out challenges for the integration of arbitrary DSLs with a stan-
dardized query and constraint language such as OCL. These were the ontological classification
problem (requiring an explicit mapping of domain concepts to the linguistic elements expected
by OCL) and the system instantiation problem (demanding an abstraction from the system-level
element instantiation semantics).

Then, I examined existing approaches to model composition within the bounds of a self-defined
conceptual framework. I concluded that an adapter-based mechanism is most suitable in the
context of this report and preferable over other methods such as model merge. Furthermore, I
conducted a detailed requirements analysis based on a simple example DSL.

90 7. DISCUSSION

Thereafter, I presented a comprehensive analysis of existing implementations that try to
address the same or similar problems as this report. In my discussion, I highlighted the respective
strengths and weaknesses of the Dresden OCL2 Toolkit, the Kent OCL Library and the Epsilon
Platform. I paid particular attention to the Dresden OCL2 Toolkit implementation since it
forms the background of my own work.

I continued by thoroughly describing the structure of the Pivot Model and the rationale behind
some of the design decisions leading to its final form. I explained how the EMOF metamodel
was extended to fully leverage the expressive power of the Object Constraint Language. Also,
I justified some minor changes made to the Essential OCL metamodel in an attempt to cor-
rect apparent discrepancies and insufficiencies in the specification. I showed that the model
adaptation principle is powerful enough to integrate structurally heterogeneous DSLs residing
in any form of model repository accessible via a Java API. Finally, I explained some of the more
intricate details of the EMF-based prototypical implementation. I highlighted how variability
and extensibility can be ensured through an overall design scheme that completely relies on
well-defined interfaces as the only form of component connection.

Summing up, this report has shown that an integration of OCL with arbitrary domain-specific
languages is possible, but requires careful consideration of a number of different issues. The
definition of a common metamodel, the selection of a model composition mechanism as well as the
design of an integration architecture all raise non-trivial questions. Many more challenges have to
be met in order to achieve the long-term goal of a more industrialized and automatized software
development industry as pictured in Section 1.1. Since the paradigm of multi-domain modeling
using a variety of different DSLs continues to receive attention in the MDSD community, the
Pivot Model principle may represent an important step towards more correct domain-specific
models and, ultimately, more precision in modeling complex software systems.

7.5 Future Work

Naturally, a single report cannot exhaustively cover the complex topic that forms the background
of this project. Together with [Wen06b], this work represents one of the first attempts to extend
the scope of the Dresden OCL2 Toolkit beyond an OCL engine for MOF and UML models. Since
I have re-engineered and rewritten most of the original implementation in order to modernize
the outdated MDR-based infrastructure, the available time did not suffice to explore more of
the practical challenges involved with integrating arbitrary DSLs into an OCL engine. This
leaves room for exciting future research which hopefully will have a good foundation in the
infrastructure components developed for this report.

Of the possible topics for continuing thesis projects, two have already been fixed and commit-
ted to. One project will refactor the existing OCL 2.0 parser to integrate it with the new Model
Bus infrastructure and thus eliminate the need for the prototypical XOCL language used so far.
Another work aims to develop an OCL interpreter operating on the EMF-based Essential OCL
implementation created for this report. This motivates the considerable effort I have devoted
to identifying potential pitfalls and design flaws in the current Toolkit which would jeopardize
the implementation of such an interpreter. In parallel, Pivot Model bindings for UML 1.5 and
MOF 1.4 are supposed to be added.

Medium- and long-term goals in relation to a further evolution of the Dresden OCL2 Toolkit
are to port the existing tools for code generation [Hei06, Bra06], model transformation [Wen06a]
and abstract syntax model visualization [Gär06] to the new platform. Eventually, a metamodel-
agnostic QVT engine may provide the foundations for original research into new application
domains for model transformations.

7.5. FUTURE WORK 91

Furthermore, the limitations of this report’s prototypical implementation can serve as a guide-
line for future work. An obvious candidate is the custom code generator for creating adapter
skeletons when integrating other domain-specific languages. In conjunction with this work, a
graphical editor is imaginable that allows to link DSL and Pivot Model concepts more intuitively
than via the annotation mechanism proposed in Section 6.2.2.

In contrast to these rather technical topics, I would also like to show up a more theoretical
research agenda. For instance, it may be worthwhile to investigate the semantics of mappings
from a target language to the Pivot Model concepts. When does it actually make sense to provide
such a mapping and are there possibilities to deduce a default mapping from the abstract syntax
and static semantics of the DSL in question? Approaches to ontology merging might show up
interesting perspectives. Ultimately, the aim should be to further minimize the effort required for
integrating a DSL with model management languages including — but not limited to — OCL.
This would enable less and less technically adapt users to participate in the system modeling
process. After all, bringing together domain experts and software engineers is one of the central
objectives of model-driven software development.

Another promising research goal is to examine the problem of OCL queries on the System
layer more closely. In this report, I have only suggested some fundamental abstractions required
to make OCL work on the Execution Level of an arbitrary DSL. However, concrete case studies
are required to reveal general principles for the design of applications employing OCL on the
System level. This applies both to the problem of constraints ensuring correct runtime behavior
and transformations over data using QVT.

Hopefully, the ideas and impulses presented in this section (and this report in general) will
stimulate further research into domain-specific modeling languages and their integration with
standards-based (meta-) modeling environments. Today, we are still far away from a wide-
spread adoption of model-driven approaches for general systems development. However, as
methodologies and tools gradually mature, the vision of a software development world reaching
the productivity of today’s automobile industry might become a reality. Then, error-prone and
laborious coding will be largely replaced by precise models, declaratively specified semantics and
automatically generated implementations.

92 7. DISCUSSION

93

A Specification of Pivot Model Operations

The wellformedness rules and the abstract syntax mapping defined in the OCL 2.0 Specification
employ a number of additional operations on UML metaclasses [OMG06c, p. 55]. Here, I provide
definitions of these operations adapted to the Pivot Model and error-corrected in case the original
specification was flawed.

� �
1 context Namespace
2

3 -- Returns a Type in this Namespace with the given name.
4 def: lookupType(name : String) : Type =
5 self.ownedType->any(t | t.name = name)
6

7 -- Returns a Namespace in this Namespace with the given name.
8 def: lookupNamespace(name : String) : Namespace =
9 self.nestedNamespace->any(ns | ns.name = name)� �

Listing A.1: Operations on Namespace

� �
1 context Type
2

3 -- Gives true for a type that conforms to another.
4 def: conformsTo(other: Type): Boolean =
5 (self=other) or (self.allParents()->includes(other))
6

7 -- Returns all of the direct and indirect ancestors of a type
8 def: allParents(): Set(Type) =
9 self.superType->union(self.superType.allParents())

10

11 -- Results in the most specific common supertype of two types.
12 def: commonSuperType (other : Type) : Type =
13 Type::allInstances()->select (cst |
14 other.conformsTo (cst) and
15 self.conformsTo (cst) and
16 not Type::allInstances()->exists (clst |
17 other.conformsTo (clst) and
18 self.conformsTo (clst) and
19 clst.conformsTo (cst) and
20 clst <> cst
21)
22)->any (true)
23

24 -- Returns all properties of this Type and its supertypes.
25 def: allProperties() : Sequence(Property) =
26 self.ownedProperty->union(self.superType.allProperties())
27

28 -- Returns all operations of this Type and its supertypes.
29 def: allOperations() : Sequence(Operation) =
30 self.ownedOperation->union(self.superType.allOperations())
31

94 APPENDIX A. SPECIFICATION OF PIVOT MODEL OPERATIONS

32 -- Returns a Property of this Type with the given name.
33 def: lookupProperty(name : String) : Property =
34 self.allProperties()->any(p | p.name = name)
35

36 -- Returns an Operation of this Type with the given name and
37 -- the given parameter types.
38 def: lookupOperation(name:String, paramTypes:Sequence(Type)):Operation =
39 self.allOperations()->any (op | op.name = name and
40 op.hasMatchingSignature(paramTypes))� �

Listing A.2: Operations on Type

� �
1 context Enumeration
2

3 -- Returns an EnumerationLiteral of this Enumeration with the given name.
4 def: lookupLiteral(name : String) : EnumerationLiteral =
5 self.ownedLiteral->any(l | l.name = name)� �

Listing A.3: Operations on Enumeration

� �
1 context Property
2

3 -- Returns true if the compared property has identical name and type.
4 def: cmpSlots(p : Property): Boolean =
5 p.name = self.name and p.type = self.type� �

Listing A.4: Operations on Property

� �
1 context Operation
2

3 -- Checks whether the Operation’s signature matches with a sequence of
4 -- types. Note that in making the match only parameters with direction
5 -- kind ’in’ or ’inout’ are considered.
6 def: hasMatchingSignature(paramTypes: Sequence(Type)) : Boolean =
7 let sigParamTypes: Sequence(Type) =
8 self.inParameter.union(self.inoutParameter).type in
9 (

10 (sigParamTypes->size() = paramTypes->size()) and
11 (Set{1..paramTypes->size()}->forAll (i |
12 paramTypes->at(i).conformsTo(sigParamTypes->at(i)))
13)
14)� �

Listing A.5: Operations on Operation

95

� �
1 -- Results in a Property with the same name, type, etc. as the parameter.
2 -- Required to create tuple types from the output parameters of an Op.
3 context Parameter::asProperty(): Property
4 pre: -- none
5 post: result.name = self.name
6 post: result.type = self.type
7 post: result.isOrdered = self.isOrdered
8 post: result.isMultiple = self.isMultiple
9 post: result.isUnique = self.isUnique

10 post: result.isStatic = false� �
Listing A.6: Operations on Parameter

96 APPENDIX A. SPECIFICATION OF PIVOT MODEL OPERATIONS

97

B Essential OCL Metamodel

For reasons of completeness, this section also contains a few diagrams that I used for illustration
when discussing the adaptations of the Essential OCL metamodel in Section 6.1.1.

VoidType TypeTypeInvalidTypeCollectionType

Type
(from PivotModel)

0..*

0..1

0..*

elementType

0..1

TupleType

OrderedSetType SequenceType BagType SetType

AnyType

Figure B.1: Types

Expression
(from PivotModel)

OclExpression

ExpressionInOcl

language : String = "OCL" 0..1

1

topExpression

0..1

bodyExpression 1

Variable

0..1

0..1

selfOwner

0..1

context

0..1

0..1

0..1

resultOwner 0..1

result 0..1

0..1

0..*

varOwner0..1

parameter

0..*

Figure B.2: Top container expression

98 APPENDIX B. ESSENTIAL OCL METAMODEL

LiteralExp IfExp

FeatureCallExp

IteratorExp

CallExp

OclExpression

0..1

0..1

appliedElement 0..1

source

0..1

VariableExp

LoopExp

0..1

1

loopBodyOwner 0..1

body

1

IterateExp

Variable

0..*

0..1

referringExp 0..*

referredVariable 0..1

0..*
0..1 iterator

0..*

loopExp0..1

0..1

0..1

baseExp

0..1

result
0..1

LetExp

TypedElement
(from PivotModel)

NamedElement
(from PivotModel)

Figure B.3: Main expression concept

FeatureCallExp

Property
(from PivotModel)

Operation
(from PivotModel)

OperationCallExp
0..*

0..1

referringExp

0..*

referredOperation0..1

PropertyCallExp

0..*

0..1

referringExp 0..*

referredProperty 0..1

OclExpression

0..1

0..*

parentCall 0..1

argument
0..* {ordered}

0..*

0..1

qualifier

{ordered}

parentCall

0..*

0..1

Figure B.4: Feature Call expressions

99

OclExpression

IfExp

0..1

1

ifOwner 0..1

condition 1

0..1

1

thenOwner

0..1

thenExpression

1

0..1

1

elseOwner

0..1

elseExpression

1

Figure B.5: If expressions

LetExp

OclExpression

1

0..1

in 1

letExp

0..1

Variable

1

0..1

variable 1

letExp

0..1

0..1

0..1initializedElement

0..1 initExpression

0..1

Figure B.6: Let expressions

NamedElement
(from PivotModel)

TypedElement
(from PivotModel)

Variable

asParameter() : Parameter
asProperty() : Property

Parameter
(from PivotModel)

0..*

0..1

variable

0..*

representedParameter 0..1

Figure B.7: Variables

100 APPENDIX B. ESSENTIAL OCL METAMODEL

IntegerLiteralExp

integerSymbol : Integer

RealLiteralExp

realSymbol : Real

BooleanLiteralExp

booleanSymbol : Boolean
StringLiteralExp

stringSymbol : String

UnlimitedNaturalExp

symbol : UnlimitedNatural

LiteralExp

PrimitiveLiteralExp

NumericLiteralExp

UndefinedLiteralExp InvalidLiteralExp

EnumerationLiteral
(from PivotModel)

EnumLiteralExp

0..1

0..*

referredEnumLiteral 0..1

literalExp

0..*
TypeLiteralExp

Type
(from PivotModel)

0..*

0..1

typeExp 0..*

referredType 0..1

Figure B.8: Literals

CollectionLiteralPart

CollectionLiteralExp

kind : CollectionKind

LiteralExp

CollectionKind
<<enumeration>>

Set
OrderedSet
Bag
Sequence

TypedElement
(from PivotModel)

CollectionRange CollectionItem

TupleLiteralExp

Property
(from PivotModel)

OclExpression

TupleLiteralPart

0..*

1

part
0..*

collectionLiteralExp1

1

0..1

first

1

firstOwner
0..1

1

0..1

last

1

lastOwner
0..1

1

0..1

item1

collectionItem 0..1

0..*

0..1

part
0..*

tupleLiteralExp 0..1

0..1

0..1

property 0..1

tupleLiteralPart0..1

1

0..1

value1

tupleLiteralPart

0..1

{ordered}{ordered}

Figure B.9: Collection and tuple literals

101

C Specification of XOCL

This section fully specifies the abstract syntax of the XML-based OCL dialect called XOCL.

ConstraintKindXS

invariant
definition
precondition
postcondition
initialvalue
derivedvalue
body

<<enumeration>>

VariableXS

OclExpressionXSExpressionInOclXS

body : String
0..1

0..1

0..1

context 0..1

0..1 10..1

bodyExpression

1

ConstraintXS

name : String
kind : ConstraintKindXS
constrainedElement : String

0..1

0..1 specification

0..1constraint

0..1

NamespaceXS

pathName : String 0..*0..1

ownedRule

0..*0..1

Figure C.1: Constraints and top container expression

LiteralExpXS IfExpXS

FeatureCallExpXS

IteratorExpXS

LetExpXSCallExpXS

OclExpressionXS

0..1

0..1

0..1

source

0..1

LoopExpXS

0..1

1

0..1

body

1

VariableExpXS

IterateExpXS

VariableXS

0..*

0..1 iterator
0..*

0..1

0..*

0..1

0..*

referredVariable 0..1

0..1

0..1

0..1

result
0..1

Figure C.2: Main expression concept

102 APPENDIX C. SPECIFICATION OF XOCL

IteratorExpXS

name : IteratorExpressionXS IteratorExpressionXS

any
collect
collectNested
exists
forAll
isUnique
one
reject
select
sortedBy

<<enumeration>>

Figure C.3: Iterator expressions

FeatureCallExpXS

OperationCallExpXSPropertyCallExpXS

referredPropertyName : String

StaticPropertyCallExpXS

StaticOperationCallExpXS

OclExpressionXS

0..1

0..*

0..1

argument 0..*0..*

0..1

qualifier 0..*

0..1

CollectionOperationCallExpXS

referredCollectionOperation : CollectionOperationXS

CollectionOperationXS

equals
equalsNot
minus
append
asBag
asOrderedSet
asSequence
...

<<enumeration>>

ModelOperationCallExpXS

referredOperationName : String

Figure C.4: Feature Call expressions

103

IfExpXS

OclExpressionXS

0..1

1

elseOwner

0..1

elseExpression

1

0..1

1

thenOwner

0..1

thenExpression

1

0..1

1

ifOwner 0..1

condition 1

Figure C.5: If expressions

LetExpXS

VariableXS

1

0..1

variable 1

0..1

OclExpressionXS

0..1

in 1

0..1

0..1 0..10..1

initExpression

0..1

Figure C.6: Let expressions

VariableXS

name : String
type : String

OclExpressionXS

0..1 0..10..1

initExpression

0..1

Figure C.7: Variables

104 APPENDIX C. SPECIFICATION OF XOCL

IntegerLiteralExpXS

integerSymbol : int

RealLiteralExpXS

realSymbol : float

BooleanLiteralExpXS

booleanSymbol : boolean
StringLiteralExpXS

stringSymbol : String

UnlimitedNaturalExpXS

symbol : String

LiteralExpXS

PrimitiveLiteralExpXS

NumericLiteralExpXS

UndefinedLiteralExpXS InvalidLiteralExpXSEnumLiteralExpXS

referredEnumLiteralPathName : String

TypeLiteralExpXS

referredTypeName : String

Figure C.8: Literals

LiteralExpXS

CollectionKindXS

Set
OrderedSet
Bag
Sequence

<<enumeration>> TupleLiteralExpXS

TupleLiteralPartXS

name : String
typeName : String

0..*

0..1

part 0..*

0..1

CollectionItemXS

OclExpressionXS

1

0..1

value1

tupleLiteralPart

0..1

1

0..1

item1

0..1

CollectionRangeXS

1

0..1

last

1

0..1

1

0..1

first

1

0..1

CollectionLiteralPartXS

CollectionLiteralExpXS

kind : CollectionKindXS

0..*

1

part 0..*

1

Figure C.9: Collection and tuple literals

105

List of Figures

2.1 Models and languages . 6
2.2 Excerpt from the UML metamodel . 8
2.3 Models, languages, metamodels, and metalanguages 8
2.4 Metamodeling, modeling and DSLs . 10
2.5 The MOF metamodeling architecture . 12
2.6 A more generalized meta architecture . 13
2.7 Linguistic and ontological instantiation . 13
2.8 Ontological instantiation using stereotypes in UML 14
2.9 Model transformation scenarios . 16
2.10 An example for Package Merge . 17
2.11 The implicit result of the Package Merge . 17
2.12 UML, MOF and the Infrastructure Library . 18
2.13 The elements of the Core::Basic package . 18
2.14 Definition of EMOF using Package Merge . 19
2.15 Concrete and abstract syntax of an OCL expression 20
2.16 Essential OCL depends on EMOF . 21
2.17 The Types Package of Essential OCL . 21

3.1 The Ecore metamodel of the Eclipse Modeling Framework 24

4.1 Metamodel of PML . 26
4.2 A PML model . 26
4.3 Three levels of OCL integration . 28
4.4 OCL integration for execution in model space . 29
4.5 OCL integration for execution in system space 29
4.6 Graph-based representation of the MOF model 30
4.7 Model composition using model merge . 31
4.8 Model composition using model transformation 32
4.9 Model composition using model interfacing . 33
4.10 Model composition using model adaptation . 34

5.1 The CommonModel of the Dresden OCL2 Toolkit 38
5.2 Inheritance as metamodel composition technique in the Dresden OCL2 Toolkit . 39
5.3 Metamodel adaptation in the Dresden OCL2 Toolkit 40
5.4 The ModelFacade design of the Dresden OCL2 Toolkit 41
5.5 The Standard Library implementation of the Dresden OCL2 Toolkit (Objects) . 42
5.6 The Standard Library implementation of the Dresden OCL2 Toolkit (Types) . . 42
5.7 Converting between OCL and JMI representation in the Dresden OCL2 Toolkit . 43
5.8 Excerpt of Standard Library operations in the Dresden OCL2 Toolkit (Objects) . 44
5.9 Excerpt of Standard Library operations in the Dresden OCL2 Toolkit (Types) . 44
5.10 The Bridge metamodel of the Kent OCL Library 46
5.11 The adjusted OCL Types package of the Kent OCL Library 47
5.12 Model of context definitions in the Kent OCL Library 48
5.13 Model Adaptation in the Kent OCL Library . 49

106 List of Figures

5.14 Architecture of the Epsilon Platform . 50

6.1 Main concepts of the Pivot Model . 55
6.2 The abstract Pivot Model class NamedElement 55
6.3 Types and typed elements in the Pivot Model . 56
6.4 Operations and parameters in the Pivot Model 56
6.5 Elements with multiplicity in the Pivot Model . 57
6.6 Supporting static features in the Pivot Model . 57
6.7 Type mapping for primitive types in the Pivot Model 58
6.8 Constraint definitions in the Pivot Model . 58
6.9 Generics in the Pivot Model . 60
6.10 Binding the type parameters of generic elements 60
6.11 Generic types in the Pivot Model . 60
6.12 Generic supertypes in the Pivot Model . 61
6.13 The adjusted Essential OCL metamodel depends on the Pivot Model 61
6.14 The Essential OCL Types package aligned with the Pivot Model 62
6.15 Feature call expressions in the aligned Essential OCL 62
6.16 Model of the TypeLiteralExp in Essential OCL 63
6.17 The metaclass UndefinedLiteralExp in Essential OCL 64
6.18 Adapting an Ecore EClass for the Pivot Model Type concept 65
6.19 The Ecore metamodel adapted to the Pivot Model 65
6.20 PML adapted to the Pivot Model . 66
6.21 An improved Standard Library design for the Execution Level 68
6.22 Supporting property assignments for model transformations in QVT 69
6.23 Resolving multiple inheritance in EMF with the «extend» stereotype 70
6.24 Resolving multiple inheritance in EMF by explicitly denoting interfaces 71
6.25 Ecore model of datatypes used in the definition of the Pivot Model 71
6.26 Visually creating XOCL expressions in an editor 73
6.27 The IOclParser interface realized by the XOCL parser 74
6.28 The Model Bus infrastructure on the Concepts Level 74
6.29 Declaratively specifying the integration of a new DSL 75
6.30 Implementing the Model Adaptation approach 76
6.31 The PML metamodel in the Model Browser . 77
6.32 The metamodel of the Pivot Model adapted by itself 78
6.33 Annotating a target DSL to define the Pivot Model mapping 78
6.34 The OclLibrary facade class providing access to the model of the Standard Library 79
6.35 Each OCL expression holds a reference to the OCL Library 80
6.36 Modeling the OCL Standard Library . 82
6.37 The Model Bus infrastructure on the Definition Level 83
6.38 The Model Bus infrastructure on the Execution Level 84
6.39 An extension of the Model Bus infrastructure to support a QVT engine 84

B.1 Types . 97
B.2 Top container expression . 97
B.3 Main expression concept . 98
B.4 Feature Call expressions . 98
B.5 If expressions . 99
B.6 Let expressions . 99
B.7 Variables . 99
B.8 Literals . 100
B.9 Collection and tuple literals . 100

List of Figures 107

C.1 Constraints and top container expression . 101
C.2 Main expression concept . 101
C.3 Iterator expressions . 102
C.4 Feature Call expressions . 102
C.5 If expressions . 103
C.6 Let expressions . 103
C.7 Variables . 103
C.8 Literals . 104
C.9 Collection and tuple literals . 104

108 List of Figures

109

List of Tables

2.1 Examples of domain-specific languages . 9

4.1 Two-dimensional classification of OCL usage scenarios 28

5.1 Summary of analysis of related work . 52

7.1 Comparison of effort required for adapting a DSL 87

110 List of Tables

111

Listings

4.1 PML wellformedness rules expressed in OCL . 27

4.2 OCL constraints on a PML model . 27

5.1 Generated code with dependencies to the model repository technology 45

5.2 Adapting domain-specific execution semantics in Kent OCL 49

5.3 Accessing properties of Java objects in Epsilon 52

6.1 The summation operation defined for Collection(T) 59

6.2 The cartesian product operation of Collection(T) 59

6.3 Property assignment in QVT . 69

6.4 Excerpt from PML wellformedness rules in XOCL 72

6.5 Forwarding the code generated by EMF to another method 75

6.6 Adding transient elements to a model . 76

6.7 Combining transient elements and model adapters 77

6.8 Implementing the adapter to the Ecore model . 77

6.9 Type evaluation for property call expressions . 80

6.10 Ensuring OCL semantics for model types . 81

6.11 Ensuring type conformance of OclVoid and OclInvalid with types from the model 81

A.1 Operations on Namespace . 93

A.2 Operations on Type . 93

A.3 Operations on Enumeration . 94

A.4 Operations on Property . 94

A.5 Operations on Operation . 94

A.6 Operations on Parameter . 95

112 Listings

113

List of Abbreviations

AMMA ATLAS Model Management Architecture

AOSD Aspect-Oriented Software Development

CWM Common Warehouse Metamodel

DSL Domain-specific (modeling) language

DSM Domain-specific modeling

EMF Eclipse Modeling Framework

FOP Feature-Oriented Programming

GEF Graphical Editing Framework

GME Generic Modeling Environment

GMF Eclipse Graphical Modeling Framework

GMT Eclipse Generative Modeling Technologies

GPL General-purpose language

GRS Graph-Rewriting System

JET Java Emitter Templates

JMI Java Metadata Interfaces

JSP Java Server Pages

KDM Knowledge Discovery Metamodel

KM3 Kernel MetaMetaModel

KMF Kent Modelling Framework

MDA Model Driven Architecture

MDSD Model-Driven Software Development

MOF Meta Object Facility

OCL Object Constraint Language

OMG Object Management Group

PIM Platform Independent Model

PLE Product Line Engineering

PML Plugin Modeling Language

114 List of Abbreviations

PSM Platform Specific Model

QVT Query / View / Transformation

SPEM Software Process Engineering Metamodel

UML Unified Modeling Language

XMI XML Metadata Interchange

115

Bibliography

[AB01] D.H. Akehurst and B. Bordbar. On Querying UML Data Models with OCL. In
Proceedings of UML 2001 – The Unified Modeling Language. Modeling Languages,
Concepts, and Tools: 4th International Conference, volume 2185 of LNCS, pages
91–103, Toronto, Canada, October 2001. Springer.

[ABFJ05] Anas Abouzahra, Jean Bézivin, Marcos Didonet Del Fabro, and Frédéric Jouault.
A Practical Approach to Bridging Domain Specific Languages with UML profiles.
In Proceedings of the Best Practices for Model Driven Software Development at
OOPSLA’05, San Diego, California, USA, October 2005.

[AHMM06] D.H. Akehurst, W.G.J. Howells, and K.D. McDonald-Maier. UML/OCL – Detach-
ing the Standard Library. In Proceedings OCLApps 2006: OCL for (Meta-) Models
in Multiple Application Domains, MoDELS/UML 2006, Technical Reports, pages
205–212, Genova, Italy, October 2006. Technische Universität Dresden, Fakultät
Informatik.

[AK00] Colin Atkinson and Thomas Kühne. Meta-Level Independent Modeling. In Interna-
tional Workshop Model Engineering (in Conjunction with ECOOP’2000), Cannes,
France, June 2000.

[AK01] Colin Atkinson and Thomas Kühne. The Essence of Multilevel Metamodeling. In
Proceedings of UML 2001 – The Unified Modeling Language. Modeling Languages,
Concepts, and Tools: 4th International Conference, volume 2185 of LNCS, pages
19–33, Toronto, Canada, October 2001. Springer.

[AK02a] Colin Atkinson and Thomas Kühne. Rearchitecting the UML infrastructure. ACM
Transactions on Modeling and Computer Simulation (TOMACS), 12(4):290–321,
ACM Press, October 2002.

[AK02b] Colin Atkinson and Thomas Kühne. The role of meta-modeling in MDA. In Jean
Bézivin and Robert France, editors, International Workshop in Software Model
Engineering (in conjunction with UML’02), Dresden, Germany, October 2002.

[AK03] Colin Atkinson and Thomas Kühne. Model-Driven Development: A Metamodeling
Foundation. IEEE Software, 20(5):36–41, IEEE Computer Society, 2003.

[ALP03] David Akehurst, Peter Linington, and Octavian Patrascoiu. OCL 2.0: Implementing
the Standard. Computer Laboratory, University of Kent, November 2003.

[AMM] AMMA – ATLAS Model Management Architecture. Web page: http://www.

sciences.univ-nantes.fr/lina/atl, INRIA, Université de Nantes. Last ac-
cessed: March 2007.

[AP04] David Akehurst and Octavian Patrascoiu. OCL 2.0 – Implementing the Standard for
Multiple Metamodels. Electronic Notes in Theoretical Computer Science, (102):21–
41, Elsevier, 2004.

[Aßm06] Uwe Aßmann. Design Patterns and Frameworks. Eclipse and Framework Extension
Languages. Lecture Slides, 2006. Available at: http://st.inf.tu-dresden.de/
Lehre/WS05-06/dpf/slides/11-eclipse.pdf.

http://www.sciences.univ-nantes.fr/lina/atl
http://www.sciences.univ-nantes.fr/lina/atl
http://st.inf.tu-dresden.de/Lehre/WS05-06/dpf/slides/11-eclipse.pdf
http://st.inf.tu-dresden.de/Lehre/WS05-06/dpf/slides/11-eclipse.pdf

116 Bibliography

[Bal00] Helmut Balzert. Lehrbuch der Software-Technik — Band 1: Software-Entwicklung.
Lehrbücher der Informatik. Spektrum Akademischer Verlag, Heidelberg, 2nd edi-
tion, 2000.

[BBGN01] Don Batory, David Brant, Michael Gibson, and Michael Nolen. ExCIS: An In-
tegration of Domain-Specific Languages and Feature-Oriented Programming. In
Workshop on New Visions for Software Design and Productivity: Research and
Applications, Nashville, Tennessee, December 2001. Vanderbilt University.

[BD07] Mariano Belaunde and Gregoire Dupe. SmartQVT - An open source model trans-
formation tool implementing the MOF 2.0 QVT-Operational language. Web page:
http://smartqvt.elibel.tm.fr, France Telecom R&D, 2007. Last accessed:
April 2007.

[Béz05] Jean Bézivin. On the Unification Power of Models. Software and System Modeling
(SoSym), 4(2):171–188, 2005.

[BG01] Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the OMG/MDA
Framework. In Proceedings of the 16th Conference on Automated Software Engi-
neering, pages 273–280, San Diego, USA, November 2001. IEEE Computer Society
Press.

[BIR] Business Intelligence and Reporting Tools (BIRT) Project. Web page: http://

www.eclipse.org/birt, Eclipse.org. Last accessed: April 2007.
[BJ06] Jean Bézivin and Frédéric Jouault. KM3: a DSL for Metamodel Specification.

In Proceedings of 8th IFIP International Conference on Formal Methods for Open
Object-Based Distributed Systems, volume 4037 of LNCS, pages 171–185, Bologna,
Italy, 2006.

[BJKV06] Jean Bézivin, Frédéric Jouault, Ivan Kurtev, and Patrick Valduriez. Model-Based
DSL Frameworks. In Companion to the 21st Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2006, pages 602–616, Portland, Oregon, USA, October 2006. ACM Press.

[BL97] Jean Bézivin and Richard Lemesle. Ontology-Based Layered Semantics for Precise
OA&D Modeling. In Proceedings of the Workshops on Object-Oriented Technology.
ECOOP’97 Workshop Reader, volume 1357 of LNCS, pages 151–154, Jyväskylä,
Finland, June 1997. Springer.

[Bra04] Gilad Bracha. Generics in the Java Programming Language. Sun Mi-
crosystems, July 2004. Available at: http://java.sun.com/j2se/1.5/pdf/

generics-tutorial.pdf.
[Bra06] Ronny Brandt. Java-Codegenerierung und Instrumentierung von Java-Programmen

in der metamodellbasierten Architektur des Dresden OCL Toolkit. Großer Be-
leg, Technische Universität Dresden, Lehrstuhl für Softwaretechnologie, September
2006. In German.

[BSH99] Sjaak Brinkkemper, Motoshi Saeki, and Frank Harmsen. Meta-Modelling Based
Assembly Techniques for Situational Method Engineering. In 10th International
Conference on Advanced Information Systems Engineering (CAiSE’98), Pisa, Italy,
volume 24 of Information Systems, pages 209–228. Elsevier Science Ltd., June 1999.

[BSM+03] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J.
Grose. Eclipse Modeling Framework. Eclipse Series. Addison Wesley Longman,
Amsterdam, 1st edition, August 2003.

[Bür05] Torsten Bürger. Contributions to Language Composition. Diplomarbeit, Technische
Universität Dresden, Lehrstuhl für Softwaretechnologie, October 2005.

http://smartqvt.elibel.tm.fr
http://www.eclipse.org/birt
http://www.eclipse.org/birt
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf

Bibliography 117

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools and Applications. Addison-Wesley Longman, Amsterdam, The Netherlands,
2000.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-Based Survey of Model Transfor-
mation Approaches. IBM Systems Journal, Special Issue on Model-Driven Software
Development, 45(3):621–645, IBM Corp., July 2006.

[CN01] Paul Clements and Linda M. Northrop. Software Product Lines : Practices and
Patterns. Addison Wesley, 3rd edition, 2001.

[Coo06] Steve Cook. Domain-Specific Modeling. The Architecture Journal, 9:10–17,
Microsoft Corp., 2006. Available at: http://architecturejournal.net/2006/

issue9/F2_Domain/, Last accessed: January 2007.
[CR06] Eric Clayberg and Dan Rubel. Eclipse: Building Commercial-Quality Plug-ins.

Eclipse Series. Addison-Wesley Longman, Amsterdam, 2nd edition, April 2006.
[DHK05] Birgit Demuth, Heinrich Hußmann, and Ansgar Konermann. Generation of an OCL

2.0 Parser. In Thomas Baar, editor, Proceedings of the MoDELS’05 Workshop
on Tool Support for OCL and Related Formalisms - Needs and Trends, number
LGL-REPORT-2005-001 in Technical Reports, pages 38–52, Montego Bay, Jamaica,
October 2005. Ecole Polytechnique Fédérale de Lausanne (EPFL).

[Dmi04] Sergey Dmitriev. Language Oriented Programming: The Next Programming
Paradigm. White Paper, JetBrains, November 2004. Available at: http://www.

onboard.jetbrains.com/is1/articles/04/10/lop/, Last accessed: January
2007.

[DR06] Hong-Hai Do and Erhard Rahm. Matching large schemas: Approaches and evalu-
ation. Information Systems, Elsevier, October 2006. doi:10.1016/j.is.2006.09.002.

[Ecl] Eclipse Home. Web page: http://www.eclipse.org, Eclipse.org. Last accessed:
April 2007.

[EMF] Eclipse Modeling Framework (EMF) Project. Web page: http://www.eclipse.

org/modeling/emf, Eclipse.org. Last accessed: April 2007.
[Epsa] About Epsilon. Web page: http://www.eclipse.org/gmt/epsilon/about.php,

Eclipse.org. Last accessed: March 2007.
[Epsb] Extensible Platform for Specification of Integrated Languages for mOdel maN-

agement (Epsilon). Web page: http://www-users.cs.york.ac.uk/~dkolovos/
epsilon, University of York. Last accessed: January 2007.

[ES06] Matthew Emerson and Janos Sztipanovits. Techniques for Metamodel Composi-
tion. In Proceedings of the 6th OOPSLA Workshop on Domain-Specific Modeling
(DSM’06), volume 37 of Computer Science and Information System Reports, Tech-
nical Reports, University of Jyväskylä, Finland, pages 123–139, Portland, Oregon,
USA, October 2006.

[FBJ+05] Marcos Didonet Del Fabro, Jean Bézivin, Frédéric Jouault, Erwan Breton, and
Guillaume Gueltas. AMW: A Generic Model Weaver. In Journées sur l’Ingénierie
Dirigée par les Modèles (IDM05), Paris, France, June 2005.

[FBV06] Marcos Didonet Del Fabro, Jean Bézivin, and Patrick Valduriez. Weaving Models
with the Eclipse AMW Plugin. In Eclipse Modeling Symposium, Eclipse Summit
Europe 2006, Esslingen, Germany, October 2006.

[Fin99] Frank Finger. Java-Implementierung der OCL-Basisbibliothek. Großer Beleg, Tech-
nische Universität Dresden, Lehrstuhl für Softwaretechnologie, July 1999. In Ger-
man.

http://architecturejournal.net/2006/issue9/F2_Domain/
http://architecturejournal.net/2006/issue9/F2_Domain/
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://www.eclipse.org
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/gmt/epsilon/about.php
http://www-users.cs.york.ac.uk/~dkolovos/epsilon
http://www-users.cs.york.ac.uk/~dkolovos/epsilon

118 Bibliography

[Fow04] Martin Fowler. Inversion of Control Containers and the Dependency Injection pat-
tern. White Paper, ThoughtWorks, January 2004. Available at: http://www.

martinfowler.com/articles/injection.html, Last accessed: April 2007.

[Fow05] Martin Fowler. Language Workbenches: The Killer-App for Domain Specific Lan-
guages? White Paper, ThoughtWorks, June 2005. Available at: http://www.

martinfowler.com/articles/languageWorkbench.html, Last accessed: Jan-
uary 2007.

[Fuj] Fujaba Tool Suite. Web page: http://wwwcs.uni-paderborn.de/cs/fujaba,
Universität Paderborn. Last accessed: March 2007.

[FV07] Marcos Didonet Del Fabro and Patrick Valduriez. Semi-automatic Model Integra-
tion using Matching Transformations and Weaving Models. To appear in: The
22th Annual ACM Symposium on Applied Computing - Model Transformation
Track (MT 2007), Seoul, Korea, 2007.

[Gam96] Erich Gamma. The Extension Objects Pattern. Submitted to PLoP’96, 1996.

[Gär06] Kai-Uwe Gärtner. Visualisierung des Abstrakten Syntaxmodells (ASM) von OCL-
Ausdrücken. Großer Beleg, Technische Universität Dresden, Lehrstuhl für Soft-
waretechnologie, April 2006. In German.

[GEF] Graphical Editing Framework (GEF). Web page: http://www.eclipse.org/gef,
Eclipse.org. Last accessed: April 2007.

[GFB05] Martin Gogolla, Jean-Marie Favre, and Fabian Büttner. On Squeezing M0, M1, M2,
and M3 into a Single Object Diagram. In Thomas Baar, editor, Proceedings of the
MoDELS’05 Workshop on Tool Support for OCL and Related Formalisms - Needs
and Trends, number LGL-REPORT-2005-001 in Technical Reports, pages 1–14,
Montego Bay, Jamaica, October 2005. Ecole Polytechnique Fédérale de Lausanne
(EPFL).

[GH05] Ralf Gitzel and Tobias Hildenbrand. A Taxonomy of Metamodel Hierarchies. Avail-
able at: http://bibserv7.bib.uni-mannheim.de/madoc/volltexte/2005/

993/, April 2005.

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Professional Computing
Series. Addison-Wesley Longman, Amsterdam, The Netherlands, 1995.

[GMF] Graphical Modeling Framework (GMF). Web page: http://www.eclipse.org/

gmf, Eclipse.org. Last accessed: March 2007.

[GMT] Generative Modeling Technologies (GMT). Web page: http://www.eclipse.

org/gmt, Eclipse.org. Last accessed: March 2007.

[GNR04] Emanuel S. Grant, Krish Narayanan, and Hassan Reza. Rigorously Defined Domain
Modeling Languages. In Juha-Pekka Tolvanen, Jonathan Sprinkle, and Matti Rossi,
editors, Proceedings of the 4th OOPSLA Workshop on Domain-Specific Modeling
(DSM’04), number TR-33 in Computer Science and Information System Reports,
Technical Reports, Vancouver, Canada, October 2004. University of Jyväskylä.

[Gog01] Martin Gogolla. Using OCL for Defining Precise, Domain-Specific UML Stereo-
types. In Aybuke Aurum and Ross Jeffery, editors, Proceedings 6th Australian
Workshop on Requirement Engineering (AWRE’2001), pages 51–60. Centre for Ad-
vanced Software Engineering Research (CAESER), University of New South Wales,
Sydney, Australia, 2001.

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://wwwcs.uni-paderborn.de/cs/fujaba
http://www.eclipse.org/gef
http://bibserv7.bib.uni-mannheim.de/madoc/volltexte/2005/993/
http://bibserv7.bib.uni-mannheim.de/madoc/volltexte/2005/993/
http://www.eclipse.org/gmf
http://www.eclipse.org/gmf
http://www.eclipse.org/gmt
http://www.eclipse.org/gmt

Bibliography 119

[GPFLC04] Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho. Ontological
Engineering, with examples from the areas of Knowledge Management, e-Commerce
and the Semantic Web. Springer, Berlin, 2004.

[GPvS02] Giancarlo Guizzardi, Luis Ferreira Pires, and Marten J. van Sinderen. On the
role of Domain Ontologies in the design of Domain-Specific Visual Modeling Lan-
guages. In Juha-Pekka Tolvanen, Jeff Gray, and Matti Rossi, editors, Proceedings of
2nd Workshop on Domain-Specific Visual Languages (in conjunction with OOPSLA
2002), Seattle, WA, USA, November 2002. Centre for Telematics and Information
Technology, University of Twente.

[GR98] Martin Gogolla and Mark Richters. On Constraints and Queries in UML. In Martin
Schader and Axel Korthaus, editors, Proceedings UML’97 Workshop ’The Unified
Modeling Language - Technical Aspects and Applications, pages 109–121. Physica-
Verlag, Heidelberg, 1998.

[Gro06] Richard C. Gronback. Eclipse Modeling Project and OMG(tm) Standards. In
Eclipse Modeling Symposium, Eclipse Summit Europe 2006, Esslingen, Germany,
October 2006. Borland Software Corporation.

[GS04] Jack Greenfield and Keith Short. Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. Wiley & Sons, Indianapolis, Indiana,
USA, 2004.

[GT06] Richard C. Gronback and Artem Tikhomirov. Developing a Domain-Specific Mod-
eler with the Eclipse Graphical Modeling Framework (GMF). European Conference
on Object-Oriented Programming (ECOOP), 20th edition, Nantes, France, Tutorial
Slides, Borland Software, July 2006. Available at: http://wiki.eclipse.org/

index.php/GMF_Documentation, Last accessed: January 2007.

[Hei05] Florian Heidenreich. SQL-Codegenerierung in der metamodellbasierten Architektur
des Dresden OCL Toolkit. Großer beleg, Technische Universität Dresden, Lehrstuhl
für Softwaretechnologie, May 2005. In German.

[Hei06] Florian Heidenreich. OCL-Codegenerierung für deklarative Sprachen. Diplomar-
beit, Technische Universität Dresden, Lehrstuhl für Softwaretechnologie, April
2006. In German.

[HKKR05] Martin Hitz, Gerti Kappel, Elisabeth Kapsammer, and Werner Retschitzegger.
UML @ Work: Objektorientierte Modellierung mit UML 2. dpunkt.verlag, Hei-
delberg, 3rd edition, 2005. In German.

[HL06] Florian Heidenreich and Henrik Lochmann. Using Graph-Rewriting for Model
Weaving in the context of Aspect-Oriented Product Line Engineering. In Pro-
ceedings of the First Workshop on Aspect-Oriented Product Line Engineering (AO-
PLE’06) co-located with the International Conference on Generative Programming
and Component Engineering (GPCE’06), Portland, Oregon, USA, October 2006.

[HZ04] Heinrich Hußmann and Steffen Zschaler. The Object Constraint Language for UML
2.0 – Overview and Assessment. UPGRADE – The European Journal for the In-
formatics Professional, V(2):25–28, April 2004.

[IBM] Rational Rose Modeler Resource Page. Web page: http://www-306.ibm.com/

software/awdtools/developer/rose/modeler, IBM Software. Last accessed:
April 2007.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Mehmet

http://wiki.eclipse.org/index.php/GMF_Documentation
http://wiki.eclipse.org/index.php/GMF_Documentation
http://www-306.ibm.com/software/awdtools/developer/rose/modeler
http://www-306.ibm.com/software/awdtools/developer/rose/modeler

120 Bibliography

Akşit and Satoshi Matsuoka, editors, Proceedings European Conference on Object-
Oriented Programming, volume 1241, pages 220–242, Berlin, Heidelberg, and New
York, 1997. Springer.

[KMF] Kent Modelling Framework (KMF). Web page: http://www.cs.kent.ac.uk/

projects/kmf, University of Kent at Canterbury, Department of Computing. Last
accessed: March 2007.

[Kon03] Ansgar Konermann. Entwurf und prototypische Implementation eines OCL2.0-
Parser. Diplomarbeit, Technische Universität Dresden, Lehrstuhl für Softwaretech-
nologie, August 2003. In German.

[KPKP06] Dimitrios S. Kolovos, Richard F. Paige, Tim Kelly, and Fiona A.C. Polack. Require-
ments for Domain-Specific Languages. In 1st ECOOP Workshop on Domain-Specific
Program Development (DSPD), in conjunction with ECOOP 2006, Nantes, France,
July 2006.

[KPP06a] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Eclipse Develop-
ment Tools for Epsilon. In Eclipse Modeling Symposium, Eclipse Summit Europe
2006, Esslingen, Germany, October 2006.

[KPP06b] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Merging Models
with the Epsilon Merging Language (EML). In Proceedings of MoDELS 2006 – 9th
International Conference on Model Driven Engineering Languages and Systems,
volume 4199 of LNCS, pages 215–229, Genova, Italy, October 2006. Springer.

[KPP06c] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. The Epsilon Object
Language (EOL). In Proceedings European Conference in Model Driven Architecture
(EC-MDA) 2006, volume 4066 of LNCS, pages 128–142, Bilbao, Spain, July 2006.
Springer.

[KPP06d] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Towards Using OCL
for Instance-Level Queries in Domain Specific Languages. In Proceedings OCLApps
2006: OCL for (Meta-) Models in Multiple Application Domains, MoDELS/UML
2006, Technical Reports, pages 26–37, Genova, Italy, October 2006. Technische
Universität Dresden, Fakultät Informatik.

[Küh06] Thomas Kühne. Matters of (Meta-) Modeling. Software and Systems Modeling,
5(4):369–385, Springer, December 2006.

[KvdB04] Ivan Kurtev and Klaas van den Berg. Unifying Approach for Model Transformations
in the MOF Metamodeling Architecture. In Proceedings of the 1st European MDA
Workshop, MDA-IA. University of Twente, the Nederlands, March 2004.

[KWB03] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained — The Model Driven
Architecture: Practice and Promise. Object Technology Series. Addison-Wesley
Longman, Amsterdam, The Netherlands, 2003.

[LMB+01] Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett, Charles
Thomason, Greg Nordstrom, Jonathan Sprinkle, and Peter Volgyesi. The Generic
Modeling Environment. In Proceedings of WISP’2001 – IEEE International Work-
shop on Intelligent Signal Processing, Budapest, Hungary, May 2001. Vanderbilt
University, Institute for Software Integrated Systems, IEEE Press.

[LO04] Sten Loecher and Stefan Ocke. A Metamodel-Based OCL-Compiler for UML and
MOF. Electronic Notes in Theoretical Computer Science, (102):43–61, Elsevier,
2004.

[MC07] Domain-Specific Modeling with MetaEdit+: 10 Times Faster Than UML. White
Paper, MetaCase Consulting, 2007. Available at: http://www.metacase.

http://www.cs.kent.ac.uk/projects/kmf
http://www.cs.kent.ac.uk/projects/kmf
http://www.metacase.com/papers/Domain-specific_modeling_10X_faster_than_UML.pdf
http://www.metacase.com/papers/Domain-specific_modeling_10X_faster_than_UML.pdf

Bibliography 121

com/papers/Domain-specific_modeling_10X_faster_than_UML.pdf, Last
accessed: January 2007.

[MDR] Metadata Repository (MDR). Web page: http://mdr.netbeans.org, Net-
beans.org. Last accessed: March 2007.

[MDTa] Model Development Tools (MDT). Web page: http://www.eclipse.org/

modeling/mdt, Eclipse.org. Last accessed: April 2007.
[MDTb] Model Development Tools (MDT) OCL component. Web page: http://www.

eclipse.org/modeling/mdt/?project=ocl, Eclipse.org. Last accessed: March
2007.

[MGG+06] Milan Milanovic, Dragan Gasevic, Adrian Giurca, Gerd Wagner, and Vladan
Devedzic. On Interchanging Between OWL/SWRL and UML/OCL. In Proceed-
ings OCLApps 2006: OCL for (Meta-) Models in Multiple Application Domains,
MoDELS/UML 2006, Technical Reports, pages 81–95, Genova, Italy, October 2006.
Technische Universität Dresden, Fakultät Informatik.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to Develop
Domain-Specific Languages. ACM Computing Surveys, 37(4):316–344, December
2005.

[MODa] MODELPLEX. Web page: http://www.modelplex-ist.org. Last accessed:
March 2007.

[MODb] MODELWARE (IST Project 511731). Web page: http://www.modelware-ist.

org. Last accessed: January 2007.
[MP07] Ed Merks and Marcelo Paternostro. Modeling Generics With Ecore. In EclipseCon

2007, Santa Clara, California, USA. IBM Corp., March 2007. Tutorial Slides. Avail-
able at: http://www.eclipsecon.org/2007/index.php?page=sub/&id=3845.

[MSUW04] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA Distilled: Prin-
ciples of Model-Driven Architecture. Object Technology Series. Addision-Wesley
Longman, Amsterdam, The Netherlands, 2004.

[MW94] Thomas J. McCabe and Arthur H. Watson. Software Complexity. Journal of
Defense Software Engineering, 7(12):5–9, December 1994.

[MZ98] Tova Milo and Sagit Zohar. Using Schema Matching to Simplify Heterogeneous
Data Translation. In Proceedings of the 24th VLDB Conference, pages 122–133,
New York, USA, August 1998.

[NR68] Peter Naur and Brian Randell, editors. Software Engineering: Report on a confer-
ence sponsored by the NATO SCIENCE COMMITTEE, Garmisch, Germany, 7th
to 11th October 1968, January 1968. Available at: http://homepages.cs.ncl.

ac.uk/brian.randell/NATO/nato1968.PDF.
[Ock03] Stefan Ocke. Entwurf und Implementation eines metamodellbasierten OCL-

Compilers. Diplomarbeit, Technische Universität Dresden, Lehrstuhl für Soft-
waretechnologie, June 2003. In German.

[OMGa] Object Management Group (OMG). Web page: http://www.omg.org. Last ac-
cessed: May 2007.

[OMGb] UML 1.5 Models in MDL Format - Action Semantics FTF outcome. Download:
http://www.omg.org/docs/ptc/02-09-04.zip, Object Management Group
(OMG). Last accessed: January 2007.

[OMGc] UML 2.0 Superstructure FTF Rose model containing the UML 2 metamodel.
Download: http://www.omg.org/docs/ptc/04-10-05.zip, Object Manage-
ment Group (OMG). Last accessed: January 2007.

http://www.metacase.com/papers/Domain-specific_modeling_10X_faster_than_UML.pdf
http://www.metacase.com/papers/Domain-specific_modeling_10X_faster_than_UML.pdf
http://mdr.netbeans.org
http://www.eclipse.org/modeling/mdt
http://www.eclipse.org/modeling/mdt
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.modelplex-ist.org
http://www.modelware-ist.org
http://www.modelware-ist.org
http://www.eclipsecon.org/2007/index.php?page=sub/&id=3845
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://www.omg.org
http://www.omg.org/docs/ptc/02-09-04.zip
http://www.omg.org/docs/ptc/04-10-05.zip

122 Bibliography

[OMGd] UML Resource Page. Web Page: http://www.uml.org, Object Management
Group (OMG). Last accessed: January 2007.

[OMG02] Object Management Group – OMG. Meta Object Facility (MOF) Specification,
Version 1.4, April 2002. OMG document number formal/02-04-03, Available at:
http://www.omg.org/docs/formal/02-04-03.pdf.

[OMG03a] Object Management Group – OMG. Common Warehouse Metamodel (CWM) Spec-
ification, Version 1.1, Volume 1, March 2003. OMG document number formal/03-
03-02, Available at: http://www.omg.org/docs/formal/03-03-02.pdf.

[OMG03b] Object Management Group – OMG. MDA Guide Version 1.0.1. June 2003. OMG
document number omg/2003-06-01, Available at: http://www.omg.org/docs/

omg/03-06-01.pdf.
[OMG04] Object Management Group – OMG. Unified Modeling Language Specification,

Version 1.4.2, July 2004. OMG document number formal/04-07-02, Available at:
http://www.omg.org/docs/formal/04-07-02.pdf.

[OMG05a] Object Management Group – OMG. MOF 2.0/XMI Mapping Specification, Version
2.1, September 2005. OMG document number formal/05-09-01, Available at: http:
//www.omg.org/docs/formal/05-09-01.pdf.

[OMG05b] Object Management Group – OMG. Software Process Engineering Metamodel Spec-
ification, Version 1.1, January 2005. OMG document number formal/05-01-06,
Available at: http://www.omg.org/docs/formal/05-01-06.pdf.

[OMG05c] Object Management Group – OMG. Unified Modeling Language: Infrastructure
Specification, Version 2.0, March 2005. OMG document number formal/05-07-05,
Available at: http://www.omg.org/docs/formal/05-07-05.pdf.

[OMG05d] Object Management Group – OMG. Unified Modeling Language: Superstructure
Specification, Version 2.0, August 2005. OMG document number formal/06-01-01,
Available at: http://www.omg.org/docs/formal/06-01-01.pdf.

[OMG06a] Object Management Group – OMG. Architecture-Driven Modernization (ADM):
Knowledge Discovery Meta-Model (KDM), June 2006. OMG document number
ptc/06-06-07, Available at: http://www.omg.org/docs/ptc/06-06-07.pdf.

[OMG06b] Object Management Group – OMG. Meta Object Facility (MOF) Core Specifica-
tion, Version 2.0, January 2006. OMG document number formal/05-07-04, Avail-
able at: http://www.omg.org/docs/formal/05-07-04.pdf.

[OMG06c] Object Management Group – OMG. Object Constraint Language, Version 2.0, May
2006. OMG document number formal/06-05-01, Available at: http://www.omg.

org/docs/formal/06-05-01.pdf.
[PB03] Rachel A. Pottinger and Philip A. Bernstein. Merging Models Based on Given

Correspondences. In Proceedings of the 29th VLDB Conference, pages 862–873,
Berlin, Germany, September 2003.

[Pöt06] Julia Pötschke. Spezifikation und Implementierung einer Transformationsvorschrift
für ein MOF-basiertes Meta-Modell auf eine Java-basierte Zielplattform. Diplomar-
beit, Technische Universität Dresden, Lehrstuhl Rechnernetze, October 2006. In
German.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-
guage Reference Manual, Second Edition. Object Technology Series. Addison-
Wesley Longman, Amsterdam, The Netherlands, 2004.

[Sei03] Ed Seidewitz. What Models Mean. IEEE Software, 20(5):26–32, IEEE Computer
Society, 2003.

http://www.uml.org
http://www.omg.org/docs/formal/02-04-03.pdf
http://www.omg.org/docs/formal/03-03-02.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/formal/04-07-02.pdf
http://www.omg.org/docs/formal/05-09-01.pdf
http://www.omg.org/docs/formal/05-09-01.pdf
http://www.omg.org/docs/formal/05-01-06.pdf
http://www.omg.org/docs/formal/05-07-05.pdf
http://www.omg.org/docs/formal/06-01-01.pdf
http://www.omg.org/docs/ptc/06-06-07.pdf
http://www.omg.org/docs/formal/05-07-04.pdf
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/docs/formal/06-05-01.pdf

Bibliography 123

[SOE02] Kirk Schloegel, David Oglesby, and Eric Engstrom. Towards Next Generation
Metamodeling Tools. In Juha-Pekka Tolvanen, Jeff Gray, and Matti Rossi, editors,
Proceedings of 2nd Workshop on Domain-Specific Visual Languages (in conjunction
with OOPSLA 2002), Seattle, WA, USA, November 2002. Aerospace Electronic
Systems Research Lab, Honeywell International.

[Stölzel05] Mirko Stölzel. Entwurf und Implementierung der Integration des Dresden OCL
Toolkit in Fujaba. Großer Beleg, Technische Universität Dresden, Lehrstuhl für
Softwaretechnologie, November 2005. In German.

[Sun02] Sun Microsystems. Java Metadata Interface (JMI) Specification, June 2002. JSR
040, Java Community Process, Available at: http://www.jcp.org/aboutJava/

communityprocess/final/jsr040/index.html.
[SV06] Thomas Stahl and Markus Völter. Model-Driven Software Development: Technol-

ogy, Engineering, Management. Wiley & Sons, 1st edition, 2006.
[SZG06] Mirko Stölzel, Steffen Zschaler, and Leif Geiger. Integrating OCL and Model Trans-

formations in Fujaba. In Proceedings OCLApps 2006: OCL for (Meta-) Models
in Multiple Application Domains, MoDELS/UML 2006, Technical Reports, pages
140–150, Genova, Italy, October 2006. Technische Universität Dresden, Fakultät
Informatik.

[TPT] Eclipse Test & Performance Tools Platform (TPTP) Project. Web page: http:

//www.eclipse.org/tptp, Eclipse.org. Last accessed: April 2007.
[TUD] Dresden OCL Toolkit. Web page: http://dresden-ocl.sourceforge.net,

Technische Universität Dresden, Department of Computer Science. Last accessed:
March 2007.

[VKEH06] Markus Völter, Bernd Kolb, Sven Efftinge, and Arno Haase. From
Front End To Code - MDSD in Practice. Eclipse Foundation,
June 2006. Available at: http://www.eclipse.org/articles/

Article-FromFrontendToCode-MDSDInPractice/article.html.
[Völ05] Markus Völter. Patterns for Handling Cross-Cutting Concerns in Model-Driven

Software Development. In EuroPLoP 2005, December 2005. Available at: http:

//www.voelter.de/data/pub/ModelsAndAspects.pdf.
[W3C07a] World Wide Web Consortium – W3C. XML Path Language (XPath) 2.0, Jan-

uary 2007. W3C Recommendation, Available at: http://www.w3.org/TR/2007/
REC-xpath20-20070123/.

[W3C07b] World Wide Web Consortium – W3C. XSL Transformations (XSLT) Version 2.0,
January 2007. W3C Recommendation, Available at: http://www.w3.org/TR/

2007/REC-xslt20-20070123/.
[Wen06a] Christian Wende. Entwicklung eines konfigurierbaren Datenbankschemagenerators

für das Dresden OCL2 Toolkit. Großer beleg, Technische Universität Dresden,
Lehrstuhl für Softwaretechnologie, May 2006. In German.

[Wen06b] Christian Wende. Konzeption einer QVT Engine im Rahmen des Dresden OCL
Toolkit. Diplomarbeit, Technische Universität Dresden, Lehrstuhl für Softwaretech-
nologie, December 2006. In German.

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint Language Second Edition:
Getting Your Models Ready for MDA. Object Technology Series. Addison-Wesley
Longman, Amsterdam, The Netherlands, 2nd edition, 2003.

[WK06] Jos Warmer and Anneke Kleppe. Building a Flexible Software Factory Using Par-
tial Domain Specific Models. In Proceedings of the 6th OOPSLA Workshop on

http://www.jcp.org/aboutJava/communityprocess/final/jsr040/index.html
http://www.jcp.org/aboutJava/communityprocess/final/jsr040/index.html
http://www.eclipse.org/tptp
http://www.eclipse.org/tptp
http://dresden-ocl.sourceforge.net
http://www.eclipse.org/articles/Article-FromFrontendToCode-MDSDInPractice/article.html
http://www.eclipse.org/articles/Article-FromFrontendToCode-MDSDInPractice/article.html
http://www.voelter.de/data/pub/ModelsAndAspects.pdf
http://www.voelter.de/data/pub/ModelsAndAspects.pdf
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/

124 Bibliography

Domain-Specific Modeling (DSM’06), volume 37 of Computer Science and Infor-
mation System Reports, Technical Reports, University of Jyväskylä, Finland, pages
15–22, Portland, Oregon, USA, October 2006.

[WTP] Web Tools Platform (WTP) Project. Web page: http://www.eclipse.org/

webtools, Eclipse.org. Last accessed: April 2007.
[WWW] Kent Object Constraint Language Library. Web page: http://www.cs.kent.ac.

uk/projects/ocl, University of Kent at Canterbury, Department of Computing.
Last accessed: March 2007.

[ZDD06] Alanna Zito, Zinovy Diskin, and Juergen Dingel. Package Merge in UML 2: Practice
vs. Theory? In Proceedings of MoDELS 2006 – 9th International Conference on
Model Driven Engineering Languages and Systems, volume 4199 of LNCS, pages
185–199, Genova, Italy, October 2006. Springer.

[ZL01] Zheying Zhang and Kalle Lyytinen. A Framework for Component Reuse in a
Metamodelling-Based Software Development. Requirements Engineering, 6(2):116–
131, June 2001.

http://www.eclipse.org/webtools
http://www.eclipse.org/webtools
http://www.cs.kent.ac.uk/projects/ocl
http://www.cs.kent.ac.uk/projects/ocl

	1 Introduction
	1.1 Motivation
	1.2 Aim and Scope
	1.3 What does ``Pivot Model'' mean?
	1.4 Organization of this Report
	1.4.1 Chapter Structure
	1.4.2 Typographical Conventions

	2 Theoretical Foundations
	2.1 Metamodeling
	2.1.1 Overview
	2.1.2 Domain-Specific Languages
	2.1.3 The Four Meta Layers

	2.2 Model-Driven Software Development
	2.2.1 Overview
	2.2.2 Model Transformations

	2.3 The OMG Standards
	2.3.1 Package Merge
	2.3.2 The Common Core of UML and MOF
	2.3.3 Essential MOF
	2.3.4 The Object Constraint Language
	2.3.5 Essential OCL
	2.3.6 Query / View / Transformation
	2.3.7 The OMG MDA initiative

	3 Tools and Technology
	3.1 The Eclipse platform
	3.2 The Eclipse Modeling Framework

	4 Problem Analysis
	4.1 A Motivational Example
	4.1.1 The Plugin Modeling Language
	4.1.2 Adding OCL expressions to Ecore and PML models

	4.2 Usage Scenarios
	4.3 A Conceptual Framework
	4.3.1 Overview
	4.3.2 The Concepts Level
	4.3.3 The Definition Level
	4.3.4 The Execution Level

	4.4 Requirements Analysis
	4.5 The Idea of a Pivot Model

	5 Related Work
	5.1 The Dresden OCL2 Toolkit
	5.1.1 Overview
	5.1.2 The Concepts Level
	5.1.3 The Definition Level
	5.1.4 The Execution Level

	5.2 Kent OCL
	5.2.1 Overview
	5.2.2 The Concepts Level
	5.2.3 The Definition Level
	5.2.4 The Execution Level

	5.3 The Epsilon Platform
	5.3.1 Overview
	5.3.2 The Concepts and Definition Level
	5.3.3 The Execution Level

	6 Results
	6.1 Realizing the Pivot Concept
	6.1.1 The Concepts Level
	6.1.2 The Definition Level
	6.1.3 The Execution Level

	6.2 Prototypical Implementation
	6.2.1 The Concepts Level
	6.2.2 The Definition Level
	6.2.3 The Execution Level

	7 Discussion
	7.1 Evaluation
	7.2 Limitations
	7.3 Contributions of this Work
	7.4 Summary and Conclusions
	7.5 Future Work

	A Specification of Pivot Model Operations
	B Essential OCL Metamodel
	C Specification of XOCL
	List of Figures
	List of Tables
	Listings
	List of Abbreviations
	Bibliography

