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Abstract

1 
The Object Constraint Language (OCL) is a formal 

language standardized by the OMG (Object Management 

Group) that allows the specification of constraints on 

MOF- (Meta Object Facility) or EMF (Eclipse Modeling 

Framework) Ecore-based models. After about ten years of 

research and OCL prototyping in the area of using formal 

methods in practical software engineering, OCL is 

appreciated by the industry and tool vendors. An often 

used OCL library is the Dresden OCL Toolkit. OCL can 

be applied both on the meta-model (M2) and on the 

model layer (M1).  

In this paper we present use cases for OCL in the context 

of the Dresden OCL Toolkit. We show how the user is 

able to specify precise semantics both on the meta-model 

and the model layer by OCL, and how these OCL 

constraints can be verified on models respectively on 

objects. 

 

1. Introduction 

The Object Constraint Language (OCL) is part of the 

Unified Modeling Language (UML) which is 

standardized by the Object Management Group (OMG) 

[1, 2]. OCL allows the specification of constraints on 

MOF- (Meta Object Facility) [3] or EMF (Eclipse 

Modeling Framework) [4] Ecore-based models. Since the 

release of OCL 2.0 in 2004, OCL can be regarded as 

both, a query and a constraint language. Besides the 

definition of invariants, and pre- and postconditions, OCL 

can be used to enrich models with new fields, operations, 

and derived classes. OCL can be used to enrich models at 

different layers of the MOF Four Layer Metadata 

Architecture [3].  

On the meta-model layer, OCL is mostly used to specify 

well-formedness rules (WFR) that must be hold for 

models. At first, OCL was used for the Unified Modeling 

Language (UML). However, today OCL is also a 

recognized technique to specify the semantics of other 

MOF- or Ecore-based meta-models and domain specific 

languages (DSLs). On the model layer, OCL often helps 
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to specify constraints (invariants as well as pre- and 

postconditions) on (business) objects, particularly if the 

power of UML concepts is not enough to express precise 

semantics.  

The Dresden OCL Toolkit [5] provides a set of tools 

which enable the developers of UML tools to extend their 

tools with OCL support. The recent version of the toolkit 

provides an OCL2 Parser, an OCL2 Interpreter, and an 

OCL-to-Java Code Generator. Because the toolkit's 

architecture is based on a pivot model, the toolkit can be 

adapted to different meta-models and DSLs. Thus, the 

toolkit can be used to load, parse, and verify OCL 

constraints on different layers of the MOF Four Layer 

Architecture [3]. This paper will present a set of use cases 

which illustrate the wide-spread application of OCL and 

the Dresden OCL Toolkit. 

The remainder of this paper is structured as follows: In 

Section 2, we present the Dresden OCL Toolkit and its 

recent version, Dresden OCL2 for Eclipse. A short 

introduction to the pivot model will be given. In Section 

3, we present the two different approaches to verify OCL 

constraints, the interpretative and the generative 

approach. In Section 4, we present different use cases of 

the Dresden OCL Toolkit based on these approaches. The 

last section concludes the work. 

 

2. The Dresden OCL Toolkit 

The Dresden OCL Toolkit [5] is one of the software 

projects of the Software Technology Group at the 

Technische Universität Dresden, Germany. 

 

2.1 Development History 

The intention of the development of the Dresden OCL 

Toolkit was to provide a library provided with a set of 

OCL tools which can be reused by UML tool builders to 

extend their tools with OCL support. The toolkit has been 

designed for openness and modularity and is provided as 

open source at the project website [5]. It has been 

developed and evolved during many student theses since 

1998. Today, the toolkit is one of the major software 

projects at the Software Technology Group, and three 

different versions of the toolkit have already been 

released.
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Figure 1: The architecture of Dresden OCL2 for Eclipse 

 

The first and second version of the toolkit were released 

in 1999 and 2005. Both versions supported syntax and 

type checking of OCL constraints defined on UML class 

models, Java and SQL code generation, as well as Java 

code instrumentation [6]. 

In 2007, the toolkit was rewritten and released as 

Dresden OCL2 for Eclipse. The implementation of a 

pivot model as an intermediate meta-model allows 

alignment of meta-models of arbitrary domain-specific 

modeling languages (DSLs). The pivot model made the 

recent version of the toolkit independent from specific 

repositories and meta-models [7]. Today, adaptations to 

the UML2 meta-model of the Eclipse Model 

Development Tools Project [8] and to the Eclipse 

Modeling Framework (EMF) Ecore meta-model [4] are 

supported. Via the support of the UML2 meta-model, 

models created with the case tools TopCased [9], 

MagicDraw® UML [10], and Visual Paradigm [11] can 

be imported (via XMI export). Dresden OCL2 for Eclipse 

currently provides an OCL2 Parser to load and verify 

OCL constraints, an OCL2 Interpreter, and an OCL-to-

Java Code Generator. Figure 3 shows a screenshot of 

Dresden OCL2 for Eclipse, showing the Model and 

Model Instance Browser, and the OCL2 Interpreter. 

 

2.2 The Architecture of the Toolkit 

The recent toolkit has been developed as a set of 

Eclipse/OSGi plug-ins. The architecture of Dresden 

OCL2 for Eclipse is shown in Figure 1.  The architecture 

can be separated into three layers: The back-end, the 

base, and the tools layer. 

The back-end layer represents the repository and the 

meta-model which can easily be exchanged because all 

other packages of the toolkit communicate with the pivot 

model instead of the meta-model. The pivot model 

delegates all requests to the employed meta-model. A 

common meta-model is the UML2 meta-model of the 

Eclipse Model Development Tools Project [7].  

The second layer is the toolkit’s base layer which 

contains the Pivot Model, Essential OCL, and the Model 

Bus. The use of the pivot model was mentioned before. 

The package Essential OCL implements the OCL 

Standard Library by extending the pivot model. The 

model bus loads, manages, and provides access to meta-

models, models, and model instances the user wants to 

work with. 

The third layer contains all tools that use the packages of 

the second layer to load, verify, and interpret OCL 

constraints. The layer contains the OCL2 Parser for 

syntax analysis and type checking of OCL constraints, the 

OCL2 Interpreter which can be used to interpret OCL 

constraints on meta-model or model instances, and the 

OCL22Java Code Generator which transforms OCL 

constraints into aspect-oriented AspectJ [12] code. Note 

that the OCL2 Parser is located in the tools layer, but that 

the other tools are not fully independent of the OCL2 

Parser. Syntax and type checking is required for both, 

interpretation and code generation. 

 

3 Interpretation vs. Generation 

Generally, two different approaches exist to verify OCL 

constraints: an interpretative and a generative approach. 
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Figure 2: The Generic Three Layer Metadata Architecture: The relationships between meta-models, models and 

model instances in the scope of an OCL specification. 

 

The interpretative approach verifies constraints by 

interpreting them on a model and its objects. The 

generative approach instead generates code or queries 

which can be executed to verify the constraints after 

generation. Both approaches are explained more detailed 

in this section. Additionally, this section explains which 

resources are required to describe models and specify 

constraints for verification. 

 

3.1 Modeling OCL 

The Object Constraint Language [1] is a language which 

always depends on another modeling language (usually 

the UML [2]). Without another language used for 

modeling, it does not make any sense to define constraints 

because OCL is used for constraint specification but not 

for modeling itself. Thus, besides OCL, a modeling 

language is required to define a model on which OCL 

constraints shall be specified. 

Each modeling language is defined in another language, 

its meta-modeling language. For example, the Unified 

Modeling Language is defined using the Meta Object 

Facility (MOF) [3], the standardized meta-meta language 

of the OMG. The MOF is used to describe the UML 

meta-model that can be used to model UML models. 

Generally spoken, each model requires a meta-model that 

is used to describe the model. The model can be 

instantiated by model instances (for example an UML 

class diagram could be instantiated by an UML object 

diagram). The model can be enriched with OCL 

constraints that are defined on the model (using an OCL 

meta-model) and can then be verified for model instances 

of the model. 

The OMG introduced the MOF Four Layer Metadata 

Architecture [3] which is used to arrange and structure 

the meta-model, the model, and its model instances into a 

layered architecture. Generally, four layers exist, the 

meta-meta-model layer (M3), the meta-model layer (M2), 

the model layer (M1), and the model instance layer (M0). 

OCL constraints can be defined on both, meta-models and 

models to verify models or model instances. Thus, the 

four layer metadata architecture can be generalized to a 

Generic Three Layer Metadata Architecture in the scope 

of an OCL definition (see Figure 2). On the Mn+1 layer  

lies the meta-model that is used to define the model that 

shall be constrained. The used meta-model, or DSL, has 

to be adapted to the pivot model. The Dresden OCL 

Toolkit provides a utility framework for easy pivot-model 

adapter generation. On the Mn layer lies the model which 

is an instance of the meta-model that is enriched by the 

specification of OCL constraints. Finally, on the Mn-1 

layer lies the model instance on which the OCL 

constraints shall be verified. Please note, that in the 

context of such a generic layer architecture, a model 

instance can be both a model (like an UML class 

diagram) or an object (like a Java object). Thus, Dresden 

OCL2 for Eclipse can be used for both model and object 

verification, depending on whether a meta-meta-model or 

a meta-model is adapted to the pivot model. 
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3.2 The Interpretative Approach 

A first approach for OCL verification is the interpretative 

approach. The interpretative approach uses an interpreter 

to interpret constraints on a model instance (Mn-1) by 

working on its model (Mn). The interpretative approach 

includes the following steps: 

1. A model is described (Mn) using a meta-model 

adapted to the pivot model (Mn+1). 

2. The model is enriched with OCL constraints which 

are defined on the types and operations defined in the 

model (Mn). We assume that an OCL specification 

includes the syntax and type checking process 

provided by the OCL2 Parser. 

3. A model instance for which the OCL constraints shall 

be verified must be defined or generated (Mn-1). 

4. The OCL2 Interpreter interprets the constraints 

defined on the model for the model instance, working 

on the model and its objects (Mn and Mn-1). 

In contrast to the generative approach (explained in the 

following), the interpretative approach includes the 

verification of model instances. The result of the 

interpretative approach is a set of interpretation results, 

normally Boolean values like true or false. 

 

3.3 The Generative Approach 

A second approach is the generative approach. The 

generative approach uses a code generator or a model 

transformation framework to generate a new model and 

queries or code which can be executed for constraint 

verification. The generative approach includes the 

following steps: 

1. A model is described (Mn) using a meta-model 

adapted to the pivot model (Mn+1). 

2. The model is enriched with OCL constraints which 

are defined on the types and operations defined in the 

model (Mn), including syntax and type checking by 

the OCL2 Parser. 

3. A new model and queries or code are generated by 

using templates or transformation rules defined on 

the meta-model elements for the model and its 

constraints (Mn+1 and Mn). 

The generated queries, or code, can be executed to verify 

the specified OCL constraints. Note, that the verification 

of constraints is not part of the generative approach but 

has to be initialized externally. Depending on the form of 

model, query, or code which is generated, the constraints 

are verified at Mn-1 (by code execution), or at Mn-1 with 

the use of model information at Mn (by querying on 

model instances). 

 

4 Use Cases of Dresden OCL 

This section presents several OCL use cases supported by 

the Dresden OCL Toolkit. Analogous to the two 

approaches to verify OCL constraints presented in 

Section 3, the use cases are separated into two groups, 

interpretative and generative use cases. The different use 

cases will be shortly presented and illustrated with 

examples. 

 

4.1 Interpretative Use Cases 

Interpretative use cases are based on the interpretative 

approach which has been presented in Section 3.2. 

Possible interpretative use cases are model verification, 

testing, design by contract/run-time verification, 

simulation/animation, and querying. 

 

Model Verification: Using the OCL2 Interpreter, 

constraints can be verified on models. The constraints are 

defined on the meta-model (Mn = M2) which shall be 

used for modeling. The constraints are interpreted during 

the modeling process and if constraint violations occur, 

the user is informed that the model contains invalid 

constructs. Different reasons for model verification exist:  

OCL constraints can be used to describe so called well-

formedness rules (WFRs) that specify, what is required 

and not allowed in all instances of such a meta-model. 

For example one WFR of the UML2 meta-model defines, 

that all features owned by an interface must be public [2]: 

 

context Interface 

self.feature->forAll(f | f.visibility = #public) 

 

The task of UML tools is to verify the consistency of the 

users’ software models according to the UML meta-

model. Another case of model verification is the 

definition of WFRs on a domain-specific language 

(DSL). One example is the Plugin Modeling Language 

(PML), which can be used to model Eclipse plug-ins [13]. 

One WFR on the PML meta-model requires, that any 

plug-in in a PML model has an id which is not empty 

[13]: 

 

context Plugin 

inv: not self.id.oclIsUndefined() 

 

The PML is provided as an example model (based on the 

EMF Ecore meta-model) for Dresden OCL2 for Eclipse. 

Figure 3 shows Dresden OCL2 for Eclipse: The Model 

Browser shows the PML meta-model and the WFRs 

mentioned above which have been loaded as a model into 

the toolkit (Mn+1). The Model Instance Browser shows 

two plug-in instances of the PML for which the WFR 

shall be checked. The OCL2 Interpreter shows the results 

of the WFR’s interpretation which succeeded for one of 

the two plug-ins. 

Besides the definition of WFRs on existing data-types, 

some meta-models like UML [2] can also be extended by 

defining stereotypes. New UML profiles can be created 

which specialize the meta-model for a certain context.  

E. g., using the case tool Magic Draw® UML [10], it is 

possible to verify OCL constraints on models which are 

specified on meta-model stereotypes. Another example 
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Figure 3: A Screenshot of Dresden OCL2 for Eclipse: The Model Browser showing the PML meta-model, the 

Model Instance Browser containing two Plug-ins, and the OCL2 Interpreter verifying, whether or not the  

plug-ins' id is set. 

 

that uses stereotypes to define WFRs on meta-models is 

the Agricultural Case Study by Pinet et al. who use OCL 

to define an UML profile <<geographic>> for GIS data 

stored in rational data bases [14, 15]. 

Model verification could also be used to verify additional 

modeling guidelines for a specific context. For example a 

WFR could ensure that a class in an UML model should 

inherit from no, or only one, other class of the model if 

the model should be implemented in Java: 

 

context Classifier 

inv SingleInheritance:  

self.generalization->size()<=1 

 

Simulation/Animation: The interpretative approach can 

be used to animate or simulate models. A model, or meta-

model, is modeled using a graphical editor (Mn = M1 or 

Mn = M2) and afterwards, the OCL Interpreter is used to 

animate or simulate the model. Simulation/animation can 

be realized for stateful models like UML activity 

diagrams or state charts [16], but is possible for UML 

class diagrams as well by instantiating the model with 

manually or automatically created model instances which 

are used as snapshots [17]. Although model instances are 

interpreted during model simulation or animation, the aim 

of this use case is not testing the model instances but 

testing the model. This is the major difference to the 

following use case testing. One of the first case tools 

which supported model animation using the interpretative 

approach was the case tool USE (UML-based 

Specification Environment) [17, 18]. A case study 

investigating how models should be tested by using USE 

can be found in [19]. 

 

Testing: Another use case of the interpretative approach 

is testing model instances. The OCL2 Interpreter can be 

used to check constraints defined on a model (Mn = M1) 

for individual model instances during the software 

development process. The constraints can be verified by 

the software engineer using interpretation on especially 

generated or defined model instances to check whether or 

not the defined constraints are fulfilled for the developed 

software implementation.  

 

Run-Time Verification: Additionally, the interpretative 

approach can be used to verify constraints during 

software runtime. Such verification is commonly known 

as design by contract [20] or run-time verification [21]. 

OCL constraints are defined on a model (Mn = M1) and 

the OCL2 Interpreter is integrated into a runtime 

environment which interprets the constraints for all 

instances of the model during their execution. Note that in 

contrast to testing in using design by contract, the 

constraints are interpreted during software run-time and 

not only during software testing in the software 

development process. Runtime verification is subject of 

current research at the Software Technology Group and 

will be implemented by adapting the OCL2 Interpreter of 
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Dresden OCL2 for Eclipse to the contracting language 

Treaty [22, 23].  

Another research project on run-time verification has 

been realized at the University of Nice-Sophia Antipolis, 

France. The OCL2 Interpreter of Dresden OCL (2005 

release) was used to verify adaptations of components at 

run-time [24, 25, 26]. Adaptations are considered as 

behavioral and assembly changes in a component 

composition at runtime. Different ways to adapt a 

component system were described as adaptation patterns 

and safety properties at the model level [26]. Safety 

properties were described as sets of OCL constraints 

which have to be ensured before adaptation. By 

interpreting the results of such constraints, the 

consistency of adaptations can be verified and the 

adaptation can be undone in case of consistency violation. 

 

Querying: Querying with OCL is also possible using an 

OCL interpreter. OCL can be used to define new 

operations on a model (Mn = M1) which are executed 

and interpreted on model instances of the model. OCL is 

a powerful language that, with its navigation operator and 

especially its special operations like allInstances() 

and oclIsNew(),  provides a strong basis to be used as 

a query language on both relational databases and run-

time objects in object-oriented software systems. Kolovos 

et al. presented a case study which illustrated how OCL 

could be used to evaluate queries on relational databases 

[27]. For example, the OCL method allInstances() 

could be used to return all columns from a table in a 

database. In the UML case tool USE [18], OCL is used 

for querying as well. They use their interpreter to enable 

users to query on objects of snapshots during animation 

to find potential erroneous objects [17]. 

 

4.2 Generative Use Cases 

Generative use cases are based on the generative 

approach presented in Section 3.3. Generative use cases 

can be divided into two major groups, code generation 

use cases and model transformation use cases. Generative 

use cases are testing, design by contract/run-time 

verification, simulation/animation, and model 

transformation. 

 

Testing using Generated Code: The generative 

approach can be used to generate test code to verify 

constraints for objects during software development. OCL 

constraints are defined on a model (Mn = M1) for which 

a code implementation shall be tested (M0). The 

OCL22Java Code Generator can be used to generate test 

code (for example JUnit code [28]), which can be 

executed to verify the constraints for specific created 

model instances. Note that generated code for testing is 

executed by the software developers during the software 

development process and is not used during software 

runtime. 

The Java Code Generator of Dresden OCL2 for Eclipse 

does not support JUnit code generation yet. But the 

template-based code generation could be easily adapted 

to generate JUnit code. Such an implementation has been 

investigated by a thesis at the Swiss Federal Institute of 

Technology, Zurich [29].  

 

Design by Contract or Run-time Verification using 

Generated Code: Similar to testing is the generation of 

constraint code to realize design by contract [20] or run-

time verification [21]. But in contrast to testing, the 

generated constraint code is not only executed during the 

software development process, but also during software 

run-time. Again, the constraints are defined on the model 

(Mn = M1) and executable code is generated using the 

templates defined on the meta-model (M2). 

Different solutions exist to realize run-time verification or 

design by contract using generated code. The old Java 

Code Generator of the Dresden OCL Toolkit (2005 

release) supported code instrumentation of Java code, 

which generated the assertion code directly into Java 

source code [30, 31]. Dresden OCL2 for Eclipse provides 

an OCL22Java Code Generator which generates AspectJ 

[12] code that can be woven into existing Java code to 

ensure the specified constraints at software run-time [32]. 

Some of the advantages of an aspect-oriented approach 

are that the verification code can be woven into both, 

source and byte code, and that the concern of verification 

is cleanly separated from the business logic. 

 

Simulation/Animation using Generated Code: 

Generated code of the Code Generator could be used to 

animate or simulate model elements as well as an OCL 

interpreter. The modeled meta-model, or model (Mn = 

M2 or Mn = M1), enriched with OCL constraints could 

be transformed into executable code snippets which are 

used to animate or simulate the model in a graphical 

editor during modeling [16].  

For example, Dresden OCL has been integrated into the 

modeling case tool MagicDraw® UML [10], which uses 

the toolkit’s Java Code Generator (2005 release) to 

enable UML model and object animation. 

 

Model Transformation: Another major use case of the 

generative approach is model transformation. Model 

transformation uses a generation or transformation 

framework to transform a model into another model 

defined on another meta-model. A model (Mn = M1) is 

transformed using transformation rules defined on its 

meta-model (M2). The OCL constraints specified on the 

model are transformed as well. Some model 

transformations are UML/OCL to SQL schema  

transformation, and UML/OCL to XML/XQuery 

transformation (both supported with the second version of 

the Dresden OCL Toolkit, 2005 release) [10]. 

Furthermore, other model transformations like UML/OCL 
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to SBVR [34], or vice versa, have been evaluated in 

research projects [35].  

Note that depending on the target meta-model, model and 

constraints can be transformed together into a new model 

(e.g., SBVR), or the OCL constraints can be transformed 

into additional queries which work on the transformed 

model (e.g., XML/XQuery or SQL). 

Another approach of model transformation was 

developed at the Software Technology Group by 

integrating OCL constraints into the model transformation 

process of Fujaba [36, 37]. OCL support was integrated 

into Fujaba’s story diagrams which are used to transform 

method specifications into executable code. In this 

context, OCL was not used to specify constraints on a 

model but to specify the model’s semantics platform 

independently. The expressions defined in OCL in the 

method’s semantic specification are used to transform the 

model into different platform specific models like Java or 

C++ code [37]. 

 

5. Conclusion 

The Dresden OCL Toolkit looks back on a decade of 

research and development. Our intention was, and is still, 

to make several OCL tools available to other tool 

developers as an open source library under the LGPL 

license. In this paper, we presented different use cases in 

the software development that could benefit from using 

OCL. Some of the known integrations with other tools 

and tool chains as well as projects using Dresden OCL 

were cited as examples.   

Most of the today's UML tools provide a "constraint 

field" according to the UML standard. However, only few 

UML tools support the processing of OCL constraints up 

to now. A first step in the processing of OCL constraints 

(or more generally OCL expressions) is parsing and 

checking the static semantics such as checking if all  

names are valid attributes and association ends in the 

underlying model. Such "preprocessed" OCL constraints 

helps to document the semantics of models. But the actual 

purpose using OCL is to evaluate the constraints on 

models or objects. Dresden OCL provides two basic 

evaluation approaches: the interpretative and the 

generative approach. Another facet is the matter on what 

MOF layer OCL expressions should be specified. It can 

be used, for example, to check WFRs (specified at the 

meta-model layer and evaluated on model) or to check 

business rules (specified at the model layer and evaluated 

on objects). Besides these basic model and object 

verification use cases, further scenarios are possible. The 

second version of OCL provides features to query models 

and objects and to derive new elements. Therewith, OCL 

becomes a model transformation and query language. 

We know about many use cases of the Dresden OCL 

toolkit and are always interested to get feedback using 

OCL both in the industrial and academic field. Moreover, 

we invite the open source community to make 

contributions by new or enhanced tools. We are aware 

that the use of a formal language in the general software 

practice is a long way. Only user-friendly and robust OCL 

support can convince software developers to use OCL in 

their daily work to make software systems more secure 

and better maintainable. 
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